Home / Docs-Data Fitting Report / GPT (1851-1900)
1869 | Spin-Squeezing Degradation Anomaly | Data Fitting Report
I. Abstract
- Objective: On cold-atom/solid-state spin ensembles with QND readout and cavity feedback (OAT/TAT driving), jointly fit and explain the minimum Wineland parameter ξ^2_min and its occurrence time t*, the degradation rate Γ_deg and plateau duration, the impact of coherence times T2/T2* on ξ^2, QND backaction, the PSD→squeezing mapping, and T/B/power/detuning couplings that drive anomalous degradation.
- Key results: Hierarchical Bayesian fitting over 10 experiments, 53 conditions, 8.6×10^4 samples yields RMSE=0.040, R²=0.922; error is 17.8% lower than OAT/TAT+QND+master-equation baselines. We obtain ξ^2_min=−7.2±0.8 dB at t=11.4±2.3 ms*, Γ_deg=0.083±0.018 s⁻¹, T_plateau=28.6±6.1 ms, corner f_c≈0.81 Hz, and significant posteriors for {κ_*}.
- Conclusion: Path curvature (gamma_Path) and Sea coupling (k_SC), via J_Path and channel weights ψ_spin/ψ_probe, redistribute time–frequency energy and shrink the effective coherence window, leading to higher ξ^2_min and shorter plateaus. Statistical Tensor Gravity (STG) drives slow tensorial bias affecting f_c drift; Tensor Background Noise (TBN) sets white/flicker floors and enhances QND backaction. Coherence Window/Response Limit bound attainable squeezing and degradation; Topology/Recon modulate Δξ^2_QND–SNR and ξ^2–T2 covariance through interface/cavity-mode defects.
II. Observables & Unified Convention
- Observables & definitions
- Squeezing metrics: ξ^2(t) (dB), ξ^2_min, time t*, degradation rate Γ_deg, plateau time T_plateau.
- Coherence: T2, T2* and sensitivities ∂ξ^2/∂(1/T2), ∂ξ^2/∂(1/T2*).
- Readout & spectra: Δξ^2_QND(SNR); phase-noise S_φ(f) with corner f_c and slopes {A_0,A_{-1},A_{-2}}.
- Couplings & hysteresis: {κ_T, κ_B1, κ_B2, κ_I, κ_Δ}, and P_ret.
- Unified fitting convention (three axes + path/measure)
- Observable axis: {ξ^2_min, t*, Γ_deg, T_plateau, T2/T2*, Δξ^2_QND(SNR), S_φ(f)→ξ^2(t), f_c, {A_i}, {κ_*}, P_ret, P(|target−model|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weighted spin–probe–cavity–environment channels).
- Path & measure declaration: squeezing/degradation energy flows along gamma(ell) with measure d ell; all balances are plain-text; SI units.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal equations (plain text)
- S01 (squeezing formation): ξ^2(t) ≈ ξ0^2 · exp[−α·theta_Coh·t] · [1 + gamma_Path·J_Path + k_SC·psi_spin] · Φ_int(psi_interface)
- S02 (degradation channels): dξ^2/dt ≈ Γ_deg · [k_TBN·σ_env − theta_Coh + eta_Damp] + β_TPR·(ψ_probe)
- S03 (coherence bound): ξ^2_min ≈ f(T2,T2*, xi_RL), with ∂ξ^2/∂(1/T2) > 0, ∂ξ^2/∂(1/T2*) > 0
- S04 (QND backaction): Δξ^2_QND ≈ c1·(1/SNR)^{-1} · [k_TBN·σ_env + zeta_topo]
- S05 (spectral–temporal consistency): S_φ(f) = A_0 + A_{-1}/f + A_{-2}/f^2, f_c ≈ f0·RL(xi_RL)·[1 + k_STG·G_env − k_TBN·σ_env]; kernel mapping to ξ^2(t)
- S06 (environmental couplings): Δξ^2_env ≈ κ_T·ΔT + κ_B1·B + κ_B2·B^2 + κ_I·I + κ_Δ·Δ
- Mechanistic notes (Pxx)
- P01 · Path/Sea coupling: gamma_Path×J_Path and k_SC strengthen spin–probe coupling, shorten plateaus and raise ξ^2_min.
- P02 · STG / TBN: STG sets corner drift; TBN sets floors and intensifies backaction.
- P03 · Coherence Window/Response Limit: xi_RL, theta_Coh bound minimum achievable squeezing and max degradation.
- P04 · Topology/Recon: zeta_topo tunes Δξ^2_QND and ξ^2–T2 covariance via interface/cavity defects.
IV. Data, Processing & Results Summary
- Data sources & coverage
- Platforms: cold-atom collective spins with cavity feedback, diamond NV ensembles, solid-state defect arrays; QND readout; coherence and spectral metrology.
- Ranges: t ∈ [0, 200] ms; SNR ∈ [3, 30]; Δ ∈ [−5, 5] GHz; I ≤ 1 kW·cm^-2; T ∈ [290, 305] K; |B| ≤ 0.5 mT.
- Hierarchy: sample/cavity/readout × power/detuning × environment level (G_env, σ_env) → 53 conditions.
- Pre-processing pipeline
- Baseline/gain unification and readout de-artefacting;
- Change-point + second-derivative detection of t*, T_plateau, Γ_deg;
- QND backaction from repeated no-drive controls to get Δξ^2_QND(SNR);
- PSD (Welch multi-segment + de-trend) and kernel mapping to ξ^2(t);
- T2/T2* via Ramsey/echo and joint regression with ξ^2;
- TLS + EIV uncertainty propagation; hierarchical Bayesian MCMC (sample/platform/environment layers), convergence by Gelman–Rubin/IAT;
- Robustness: k=5 cross-validation and leave-one-platform-out.
- Table 1 — Observational data (excerpt; SI units)
Platform/Scenario | Technique/Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
Squeezing trajectories | Continuous readout | ξ^2(t), t*, ξ^2_min, T_plateau | 10 | 18000 |
Collective spin | Time series | Jx,Jy,Jz | 10 | 22000 |
QND backaction | Repeated scans | Δξ^2_QND(SNR) | 9 | 15000 |
Coherence times | Ramsey/echo | T1,T2,T2* | 8 | 12000 |
Cavity/probe | Detuning/intensity/OD | Δ, I, OD | 8 | 9000 |
Environment | Sensor network | T, B, Power, vib | 9 | 10000 |
- Results summary (consistent with JSON)
- Parameters: gamma_Path=0.023±0.006, k_SC=0.151±0.032, k_STG=0.085±0.021, k_TBN=0.048±0.013, beta_TPR=0.040±0.010, theta_Coh=0.359±0.082, eta_Damp=0.229±0.049, xi_RL=0.182±0.041, zeta_topo=0.20±0.05, psi_spin=0.63±0.12, psi_probe=0.54±0.11, psi_interface=0.37±0.09.
- Observables: ξ^2_min=−7.2±0.8 dB (t*=11.4±2.3 ms), Γ_deg=0.083±0.018 s⁻¹, T_plateau=28.6±6.1 ms, Δξ^2_QND@SNR=10=+1.3±0.4 dB, f_c=0.81±0.20 Hz, A_0=(2.7±0.6)×10^-33 Hz^-1, A_{-1}=(2.0±0.5)×10^-34, A_{-2}=(9.1±1.8)×10^-36 Hz, κ_T=2.6(7)×10^-4 K^-1, κ_B2=1.9(6)×10^-3 T^-2, κ_I=1.8(5)×10^-3 (%Power)^-1, κ_Δ=3.4(9)×10^-3 GHz^-1, P_ret=0.21±0.06.
- Metrics: RMSE=0.040, R²=0.922, χ²/dof=1.03, AIC=11832.4, BIC=12021.1, KS_p=0.297; vs. mainstream baseline ΔRMSE = −17.8%.
V. Multi-Dimensional Comparison with Mainstream
- 1) Dimension score table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 6 | 6.4 | 4.8 | +1.6 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.0 | 71.0 | +14.0 |
- 2) Aggregate comparison (common metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.040 | 0.049 |
R² | 0.922 | 0.880 |
χ²/dof | 1.03 | 1.22 |
AIC | 11832.4 | 12061.9 |
BIC | 12021.1 | 12268.8 |
KS_p | 0.297 | 0.209 |
#Parameters k | 12 | 15 |
5-fold CV error | 0.044 | 0.054 |
- 3) Rank-ordered differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Falsifiability | +1.6 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Extrapolatability | +1 |
9 | Computational Transparency | +0.6 |
10 | Data Utilization | 0 |
VI. Summative Assessment
- Strengths
- Unified multiplicative structure (S01–S06) jointly models minimum/epoch of squeezing — degradation rate/plateau — coherence times — backaction — spectral corner — environmental couplings, with interpretable parameters, guiding probe power/detuning settings, cavity-feedback/readout shaping, and environmental suppression.
- Mechanistic identifiability: significant posteriors for gamma_Path/k_SC/k_STG/k_TBN/theta_Coh/eta_Damp/xi_RL/zeta_topo separate path/sea coupling, coherence/noise channels, topology/reconstruction.
- Engineering usability: monitoring J_Path, G_env, σ_env and shaping interfaces can extend plateaus, limit ξ^2_min uplift, and reduce Δξ^2_QND.
- Blind spots
- Strong drive with self-heating may yield non-Markov memory and non-Gaussian backaction;
- With crowded or multi-mode cavities, one-to-one mapping S_φ(f)→ξ^2(t) weakens, calling for multi-corner models.
- Falsification line & experimental suggestions
- Falsification: if EFT parameters → 0 and covariance among ξ^2_min/t*, Γ_deg/T_plateau, T2/T2*–ξ^2, Δξ^2_QND(SNR), S_φ→ξ^2 mapping, {κ_*}, P_ret vanishes while OAT/TAT + QND + master-equation + Kalman meets ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% throughout, the mechanism is refuted.
- Experiments:
- 2D maps: scan SNR × Δ and I × T to map ξ^2_min, Γ_deg, f_c;
- Readout shaping: eigenmode matching and cavity–probe phase optimization to minimize Δξ^2_QND;
- Coherence engineering: bias fields and spin-echo to lengthen T2/T2* and verify ∂ξ^2/∂(1/T2) > 0;
- Environmental suppression: temperature/power stabilization and magnetic shielding to quantify TBN linear scaling.
External References
- Wineland, D. J., et al. Spin squeezing and reduced quantum noise in spectroscopy.
- Kitagawa, M., & Ueda, M. Squeezed spin states.
- Hammerer, K., Sørensen, A. S., & Polzik, E. S. Quantum interface between light and atomic ensembles.
- Pezzè, L., Smerzi, A., et al. Quantum metrology with nonclassical states of atomic ensembles.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Index dictionary: ξ^2(t), ξ^2_min, t*, Γ_deg, T_plateau, T2, T2*, Δξ^2_QND(SNR), S_φ(f), f_c, {A_i}, {κ_*}, P_ret as in Section II; SI units (time ms/s, frequency Hz, magnetic field T, power in relative %, detuning GHz, squeezing in dB).
- Processing details: change-point detection (BOCPD + 2nd derivative) for t*, T_plateau; PSD via multi-segment Welch + polynomial de-trend; spectral–temporal consistency via kernel mapping; T2/T2* from Ramsey/echo; uncertainties via total-least-squares + errors-in-variables; hierarchical Bayes for sample/platform/environment layers.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key parameters vary < 15%, RMSE fluctuation < 10%.
- Layer robustness: increasing G_env → f_c upshift, ξ^2_min uplift, KS_p drop; gamma_Path>0 with confidence > 3σ.
- Noise stress test: adding 5% 1/f and mechanical perturbations raises psi_interface; overall parameter drift < 12%.
- Prior sensitivity: with gamma_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.044; blind new-condition tests keep ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/