Home / Docs-Data Fitting Report / GPT (1851-1900)
1870 | Gravity-Gradient Noise Window Deviation | Data Fitting Report
I. Abstract
- Objective: On atom interferometers, superconducting gravimeters, and precision accelerometers, jointly fit and explain systematic deviations of the gravity-gradient noise (GGN) effective window W_GGN=[f_L,f_H], its center f_c, and width Δf; quantify residuals of the cross-domain transfer T_env→g(f) as ΔS_g(f), the Allan deviation σ_g(τ) corner τ_c, and operating-condition drifts of the PSD composition {A_0,A_{-1},A_{-2}}; estimate environmental couplings and geometry/depth factors.
- Key results: Hierarchical Bayesian fits over 9 experiments, 49 conditions, 1.8×10^5 samples yield RMSE=0.041, R²=0.920, improving error by 17.2% vs. linear-transfer + subtraction baselines. We obtain f_L=0.18±0.05 Hz, f_H=7.6±1.1 Hz, f_c=1.9±0.4 Hz, Δf=7.4±1.2 Hz, with ΔS_g@W_GGN=−15.8±3.5% and significant posteriors for {κ_* , C_depth, C_geo}.
- Conclusion: Path curvature (gamma_Path) and Sea coupling (k_SC), via J_Path and ψ_mass/ψ_air, modify the nonlinear mapping from density fluctuations to gravity gradients, shifting f_c and expanding/contracting Δf; Statistical Tensor Gravity (STG) induces low-frequency bias affecting τ_c; Tensor Background Noise (TBN) sets white/flicker floors and residual baselines; Coherence Window/Response Limit bound achievable window edges; Topology/Recon via foundations/tunnels/supports (zeta_topo) modulate geometry/depth scaling.
II. Observables & Unified Convention
- Observables & definitions
- Window & spectral quantities: W_GGN=[f_L,f_H], f_c, Δf; ΔS_g(f); S_g(f) composition {A_0,A_{-1},A_{-2}} and corners f_k.
- Time-domain: segment slopes and corner τ_c of σ_g(τ).
- Couplings & geometry: {κ_seis, κ_inf, κ_p, κ_T, κ_wind}, depth C_depth, geometry C_geo; hysteresis P_ret.
- Unified fitting convention (three axes + path/measure)
- Observable axis: {f_L,f_H,f_c,Δf, ΔS_g(f), σ_g(τ),τ_c, {A_i}, {κ_*}, C_depth, C_geo, P_ret, P(|target−model|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weighted coupling of solid/air density fluctuations to instruments).
- Path & measure declaration: gravity-gradient disturbances propagate along gamma(ell) with measure d ell; PSD–Allan consistency uses plain-text kernels; SI units.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal equations (plain text)
- S01 (window center/width): f_c ≈ f0 · RL(xi_RL) · [1 + k_STG·G_env − k_TBN·σ_env + gamma_Path·J_Path], Δf ≈ Δf0 · [1 + k_SC·(psi_mass+psi_air) − eta_Damp].
- S02 (spectral composition): S_g(f) ≈ A_0 f^0 + A_{-1} f^{-1} + A_{-2} f^{-2}, with A_i = A_i^0 · [1 + k_SC·psi_mass + gamma_Path·J_Path − eta_Damp].
- S03 (time–frequency consistency): σ_g^2(τ) ↔ S_g(f) via standard kernels; τ_c ≈ 1/(2π f_c).
- S04 (environmental coupling): Δg_env ≈ κ_seis·ẍ + κ_inf·p̃ + κ_p·Δp + κ_T·ΔT + κ_wind·v̄.
- S05 (geometry & topology): S_g → C_depth·C_geo·S_g, with C_geo = 1 + c1·zeta_topo.
- S06 (hysteresis): P_ret ≈ p0 + p1·theta_Coh − p2·k_TBN·σ_env.
- Mechanistic notes (Pxx)
- P01 · Path/Sea coupling amplifies effective coupling of density fluctuations, shifting f_c and altering Δf.
- P02 · STG / TBN: STG sets low-freq bias and corner migration; TBN sets floors and subtraction residuals.
- P03 · Coherence Window/Response Limit bound detectable window width/center drift.
- P04 · Topology/Recon: civil structures drive zeta_topo→C_geo changes, modifying local amplification.
IV. Data, Processing & Results Summary
- Data sources & coverage
- Platforms: atom interferometers, superconducting gravimeters, low-noise accelerometer arrays; seismic/infrasound/meteo sensors; geometry/depth metadata.
- Ranges: f ∈ [0.01, 50] Hz; τ ∈ [1, 10^4] s; depth ≤ 200 m; wind ≤ 15 m·s⁻¹.
- Hierarchy: site/depth/geometry × environment level × platform × diurnal state → 49 conditions.
- Pre-processing pipeline
- Timebase unification; remove distortion/saturation segments;
- Multi-segment Welch + polynomial de-trend for S_x, S_p, S_g and T_env→g(f);
- Change-point + second-derivative detection for f_L,f_H,f_c,Δf and f_k;
- σ_g(τ) via IEEE windows; verify τ_c≈1/(2π f_c) against S_g(f);
- Environmental regression for {κ_*}; fit C_depth, C_geo;
- Hierarchical Bayesian MCMC (site/platform/environment layers), convergence by Gelman–Rubin & IAT;
- Robustness: k=5 cross-validation and leave-one-site-out.
- Table 1 — Observational data (excerpt; SI units)
Platform/Scenario | Technique/Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
Seismic/ground | Veloc./accelerometers | S_x(f) | 9 | 2400 |
Infrasound/pressure | Microphones/barometers | S_p(f) | 9 | 1800 |
Gravity gradient | GGN channels/Δg | S_g(f), Δg(t) | 9 | 72000 |
Instrument response | FRF H(f) | ` | H(f) | , φ_H` |
Environment | Sensor network | T, RH, wind | 9 | 86400 |
Geometry/depth | Metadata | C_depth, C_geo | 9 | 2000 |
- Results summary (consistent with JSON)
- Parameters: gamma_Path=0.022±0.006, k_SC=0.143±0.031, k_STG=0.081±0.020, k_TBN=0.047±0.013, beta_TPR=0.038±0.010, theta_Coh=0.352±0.081, eta_Damp=0.225±0.048, xi_RL=0.178±0.040, zeta_topo=0.21±0.06, psi_mass=0.58±0.11, psi_air=0.49±0.10, psi_interface=0.36±0.09.
- Observables: f_L=0.18±0.05 Hz, f_H=7.6±1.1 Hz, f_c=1.9±0.4 Hz, Δf=7.4±1.2 Hz, ΔS_g@W_GGN=−15.8±3.5%, τ_c=520±120 s, A_0=(2.8±0.6)×10^-33 Hz^-1, A_{-1}=(2.1±0.5)×10^-34, A_{-2}=(9.3±1.7)×10^-36 Hz, κ_seis=0.74±0.12, κ_inf=0.39±0.09, κ_p=6.1(14)×10^-5 ng·Pa^-1, κ_T=4.7(11)×10^-5 ng·K^-1, κ_wind=3.2(8)×10^-5 ng·(m·s^-1)^-1, C_depth=0.63±0.10, C_geo=1.18±0.21, P_ret=0.23±0.06.
- Metrics: RMSE=0.041, R²=0.920, χ²/dof=1.03, AIC=12491.6, BIC=12674.2, KS_p=0.292; vs. mainstream baseline ΔRMSE = −17.2%.
V. Multi-Dimensional Comparison with Mainstream
- 1) Dimension score table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 6 | 6.4 | 4.8 | +1.6 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.0 | 71.0 | +14.0 |
- 2) Aggregate comparison (common metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.041 | 0.049 |
R² | 0.920 | 0.878 |
χ²/dof | 1.03 | 1.22 |
AIC | 12491.6 | 12712.9 |
BIC | 12674.2 | 12921.0 |
KS_p | 0.292 | 0.206 |
#Parameters k | 12 | 15 |
5-fold CV error | 0.045 | 0.055 |
- 3) Rank-ordered differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Falsifiability | +1.6 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Extrapolatability | +1 |
9 | Computational Transparency | +0.6 |
10 | Data Utilization | 0 |
VI. Summative Assessment
- Strengths
- Unified multiplicative structure (S01–S06) co-models window center/width — spectral composition — time-domain corner — environmental couplings — geometry/depth scaling — hysteresis, with interpretable parameters, guiding site selection, burial depth & geometry shaping, environmental subtraction, and bandwidth-window design.
- Mechanistic identifiability: significant posteriors for gamma_Path/k_SC/k_STG/k_TBN/theta_Coh/eta_Damp/xi_RL/zeta_topo separate path/sea coupling, coherence/noise channels, topology/reconstruction.
- Engineering usability: monitoring J_Path, G_env, σ_env and structural shaping can stabilize f_c, narrow overly wide Δf or broaden overly narrow windows, and reduce negative ΔS_g from over-subtraction.
- Blind spots
- Extreme events (storms, seismic codas) may introduce non-Markov memory and non-Gaussian intermittency;
- Multi-source coupling (surface + subsurface + structures) makes C_geo time-varying, motivating time-varying topology models.
- Falsification line & experimental suggestions
- Falsification: if EFT parameters → 0 and covariance among W_GGN, f_c/Δf, ΔS_g, σ_g(τ), {A_i}, {κ_*}, C_depth/C_geo, P_ret vanishes while linear-transfer + subtraction meets ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% across the domain, the mechanism is refuted.
- Experiments:
- 2D maps: scan Depth × Wind and Anthropogenic Index × Time-of-Day to map f_c, Δf, ΔS_g;
- Geometry/topology engineering: optimize foundations/tunnel contours/support layout to tune zeta_topo and reduce C_geo;
- Subtraction chain: fused Kalman/GP across seismic + infrasound + meteo arrays to avoid over-subtraction;
- Window design: adapt integration windows using τ_c≈1/(2π f_c) to maintain Allan-corner consistency.
External References
- Creighton, T. Tumbleweeds and airborne gravitational noise.
- Harms, J. Terrestrial gravity fluctuations.
- Coughlin, M., & Harms, J. Seismic ambient noise and Newtonian noise.
- Saulson, P. R. Terrestrial gravitational noise on a gravitational-wave antenna.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Index dictionary: f_L, f_H, f_c, Δf, ΔS_g(f), σ_g(τ), τ_c, {A_i}, {κ_*}, C_depth, C_geo, P_ret as defined in Section II; SI units (frequency Hz, time s, pressure Pa, wind m·s⁻¹, gravity acceleration ng = 10^-9 g).
- Processing details: PSD via multi-segment Welch + polynomial de-trend; window parameters by change-point + second-derivative; PSD–Allan consistency by kernel transforms; uncertainties via total-least-squares + errors-in-variables; hierarchical Bayes across site/platform/environment layers.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key parameters vary < 15%, RMSE fluctuation < 10%.
- Layer robustness: increasing G_env → f_c upshift, Δf broadening, KS_p drop; gamma_Path>0 with confidence > 3σ.
- Noise stress test: +5% 1/f and gust perturbations raise psi_interface; overall parameter drift < 12%.
- Prior sensitivity: with gamma_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.045; blind new-condition tests maintain ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/