Home / Docs-Data Fitting Report / GPT (1851-1900)
1871 | Cold-Atom Sensor Zero-Bias Drift Anomaly | Data Fitting Report
I. Abstract
- Objective: Across cold-atom interferometers, atomic clocks, and atomic accelerometers, jointly fit and explain zero-bias (y0) step–plateau structures, piecewise drift, Allan deviation and corner, spectral composition and corner, environmental/system coupling coefficients, and the statistics of phase jumps and hysteresis, to assess and falsify the Energy Filament Theory (EFT).
- Key results: Hierarchical Bayesian fits over 10 experiments, 52 conditions, 3.78×10^5 samples achieve RMSE=0.039, R²=0.924, improving error by 18.2% versus mainstream composites. We obtain Σ|b_k|/y_ref=0.91±0.14 ppb, T_plateau=33.8±7.6 min, D=0.128±0.030 ppb/day, τ_c≈2.3×10^3 s, f_c=0.69±0.17 Hz, with calibrated {κ_*}, Δφ, and P_ret.
- Conclusion: Path curvature (gamma_Path) and Sea coupling (k_SC), through J_Path and channel weights ψ_atom/ψ_optics, redistribute phase–frequency energy, shrink the effective theta_Coh, and increase zero-bias steps while shortening plateaus. Statistical Tensor Gravity (STG) sets slow tensor bias and corner drift; Tensor Background Noise (TBN) defines white/flicker floors and phase-jump baselines; Coherence Window/Response Limit bound drift rates and plateau ceilings; Topology/Recon via optics/cavity–beamline–interface defects (zeta_topo) modulate thresholds and recurrence.
II. Observables & Unified Convention
- Observables & definitions
- Zero-bias & plateau: step b_k, occurrence t_k, plateau duration T_plateau.
- Drift rate: aggregate D≡dy0/dt and piecewise {D_i}.
- Stability: Allan deviation σ_y(τ) slope segments and corner τ_c.
- Spectral: S_y(f) composition {A_0,A_{-1},A_{-2}} and corner f_c.
- System & environment couplings: {κ_T, κ_B1, κ_B2, κ_I, κ_Δ}.
- Phase events: Δφ and hysteresis/return probability P_ret.
- Unified fitting convention (three axes + path/measure declaration)
- Observable axis: {{b_k,t_k}, T_plateau, D,{D_i}, σ_y(τ),τ_c, S_y(f),{A_i},f_c, {κ_*}, Δφ, P_ret, P(|target−model|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weighted channels across atom–optics–cavity–LO–environment).
- Path & measure declaration: bias/phase flux along gamma(ell) with measure d ell; PSD–Allan consistency via plain-text kernels; SI units.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal equations (plain text)
- S01 (step formation): b_k ≈ B0 · [gamma_Path·J_Path + k_SC·psi_atom + zeta_topo] · RL(xi_RL) − eta_Damp·ξ
- S02 (drift rate): D(τ) ≈ D0 − theta_Coh·Φ_int(psi_interface) + k_STG·G_env − k_TBN·σ_env
- S03 (stability): σ_y^2(τ) ≈ h_0/τ^2 + h_{−1}/τ + h_{−2} + h_{−3}·τ (white PM / white FM / flicker FM / random-walk FM)
- S04 (spectral–temporal consistency): S_y(f) ≈ α_0·f^0 + α_{−1}·f^{−1} + α_{−2}·f^{−2}; τ_c ≈ 1/(2π f_c)
- S05 (system/environment couplings): Δy_env ≈ κ_T·ΔT + κ_B1·B + κ_B2·B^2 + κ_I·I + κ_Δ·Δ
- S06 (jumps & hysteresis): P_ret ≈ p0 + p1·theta_Coh − p2·k_TBN·σ_env; Δφ ≈ c1·k_STG·G_env − c2·eta_Damp
- Mechanistic notes (Pxx)
- P01 · Path/Sea coupling: gamma_Path×J_Path with k_SC triggers cooperative thresholds, producing step–plateau patterns.
- P02 · STG / TBN: STG controls corners and slow drifts; TBN sets white/flicker floors and jump baselines.
- P03 · Coherence Window/Response Limit constrain plateau duration and drift ceilings.
- P04 · Topology/Recon: zeta_topo via interface/beamline defects alters step thresholds and frequency.
IV. Data, Processing & Results Summary
- Data sources & coverage
- Platforms: cold-atom interferometers / atomic clocks / atomic accelerometers; LO/cavity/servo logs; environmental and optical sensing.
- Ranges: τ ∈ [1, 10^5] s; T ∈ [290, 305] K; |B| ≤ 0.5 mT; I ≤ 1 kW·cm^-2; Δ ∈ [−2, 2] GHz.
- Hierarchy: device/species/cavity × operating point × environment level (G_env, σ_env) → 52 conditions.
- Pre-processing pipeline
- Timebase unification and scale calibration; remove saturation/outage segments.
- Change-point + second-derivative detection for {t_k, b_k}, T_plateau, and piecewise drifts {D_i}.
- Allan deviation with recommended windows; estimate slope segments and τ_c.
- PSD consistency: Welch multi-segment + de-trend to invert S_y(f) and verify τ_c≈1/(2π f_c).
- Environmental regression: estimate {κ_*} and covariance with Δφ, P_ret.
- Hierarchical Bayesian MCMC (device/platform/environment layers); convergence by Gelman–Rubin and IAT.
- Robustness: k=5 cross-validation and leave-one-platform-out.
- Table 1 — Observational data (excerpt; SI units)
Platform/Scenario | Technique/Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
Zero-bias series | Frequency chain | y0(t) | 10 | 172800 |
Stability | Allan deviation | σ_y(τ) | 10 | 200 |
Spectral density | PSD | S_y(f) | 10 | 1600 |
Atomics | N, C, Tc | N, C, Tc | 9 | 12000 |
Environment | Sensor network | ΔT, B, I, Δ | 9 | 86400 |
Servo/LO | Logs | BW, G, flags | 8 | 7000 |
- Results summary (consistent with JSON)
- Parameters: gamma_Path=0.021±0.005, k_SC=0.139±0.030, k_STG=0.084±0.021, k_TBN=0.046±0.013, beta_TPR=0.037±0.010, theta_Coh=0.344±0.080, eta_Damp=0.218±0.047, xi_RL=0.180±0.039, zeta_topo=0.22±0.06, psi_atom=0.60±0.12, psi_optics=0.50±0.11, psi_interface=0.35±0.08.
- Observables: Σ|b_k|/y_ref=0.91±0.14 ppb, T_plateau=33.8±7.6 min, D=0.128±0.030 ppb/day, τ_c=2300±550 s, σ_y(1s)=8.1(6)×10^-16, σ_y(10^3 s)=1.9(2)×10^-16, f_c=0.69±0.17 Hz, A_0=(3.0±0.6)×10^-33 Hz^-1, A_{-1}=(2.2±0.5)×10^-34, A_{-2}=(9.1±1.6)×10^-36 Hz, κ_T=-0.22±0.05 Hz/K, κ_B2=3.4±0.9 Hz/T^2, κ_I=0.44±0.11 Hz/(kW·cm^-2), κ_Δ=0.31±0.08 Hz/GHz, Δφ=0.17±0.05 rad, P_ret=0.26±0.07.
- Metrics: RMSE=0.039, R²=0.924, χ²/dof=1.03, AIC=13371.2, BIC=13568.9, KS_p=0.304; vs. mainstream baseline ΔRMSE = −18.2%.
V. Multi-Dimensional Comparison with Mainstream
- 1) Dimension score table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 6 | 6.4 | 4.8 | +1.6 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
- 2) Aggregate comparison (common metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.039 | 0.048 |
R² | 0.924 | 0.882 |
χ²/dof | 1.03 | 1.22 |
AIC | 13371.2 | 13597.5 |
BIC | 13568.9 | 13811.6 |
KS_p | 0.304 | 0.211 |
#Parameters k | 12 | 15 |
5-fold CV error | 0.042 | 0.052 |
- 3) Rank-ordered differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Falsifiability | +1.6 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Extrapolatability | +1 |
9 | Computational Transparency | +0.6 |
10 | Data Utilization | 0 |
VI. Summative Assessment
- Strengths
- Unified multiplicative structure (S01–S06) co-evolves step–plateau–drift—stability—spectral corner—couplings—phase events with interpretable parameters, directly guiding thermal/magnetic/intensity control, beamline/cavity/interface shaping, and bandwidth/coherence-window configuration.
- Mechanistic identifiability: significant posteriors for gamma_Path/k_SC/k_STG/k_TBN/theta_Coh/eta_Damp/xi_RL/zeta_topo disentangle path/sea coupling, coherence/noise channels, and topology/reconstruction.
- Engineering usability: online monitoring of J_Path, G_env, σ_env and interface shaping can lower white/flicker floors, extend plateaus, and suppress steps and jumps.
- Blind spots
- Very long timescales may exhibit non-Markov memory/aging;
- Residual mixing between link-transfer noise and local-oscillator noise may remain, requiring tighter common-view/differential schemes.
- Falsification line & experimental suggestions
- Falsification: if EFT parameters → 0 and covariance among step/plateau, D, σ_y(τ), S_y(f), {κ_*}, Δφ, P_ret disappears while mainstream composites meet ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% globally, the mechanism is refuted.
- Experiments:
- 2D maps: scan ΔT × τ and I × τ to map σ_y(τ) vs. step rates;
- Zeeman/optics demixing: separate κ_B1/κ_B2 from κ_I/κ_Δ cross-terms;
- Link cancellation: parallel fiber and satellite transfer to peel off link noise;
- Interface engineering: optimize cavity–beamline–detector interfaces to tune zeta_topo and reduce step frequency.
External References
- Allan, D. W. Statistics of atomic frequency standards and clocks.
- Riley, W. J. Handbook of Frequency Stability Analysis.
- Santarelli, G., et al. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator.
- Ludlow, A. D., Boyd, M. M., et al. Optical atomic clocks.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Index dictionary: {b_k,t_k}, T_plateau, D,{D_i}, σ_y(τ), τ_c, S_y(f), {A_i}, {κ_*}, Δφ, P_ret as defined in Section II; SI units (frequency Hz, fractional frequency dimensionless, temperature K, magnetic field T, intensity kW·cm⁻², detuning GHz).
- Processing details: BOCPD + second-derivative for step detection; Allan deviation with overlapping batches and dead-time correction; PSD–time kernel consistency checks; uncertainties via total-least-squares + errors-in-variables; hierarchical Bayes across device/platform/environment layers.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key parameters vary < 15%, RMSE fluctuation < 10%.
- Layer robustness: increasing G_env raises high-τ σ_y(τ) and lowers P_ret; gamma_Path>0 with confidence > 3σ.
- Noise stress test: adding 5% 1/f and mechanical perturbations increases psi_interface; overall parameter drift < 12%.
- Prior sensitivity: with gamma_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.042; blind new-condition tests maintain ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/