Home / Docs-Data Fitting Report / GPT (1851-1900)
1898 | Seasonal Drift Bands of Image-Group Centroids | Data Fitting Report
I. Abstract
- Objective: Using multi-epoch HST/JWST/Keck high-resolution arcs, MUSE dynamics, ALMA dust/gas screens, and Gaia-based calibration, identify and fit seasonal drift bands of image-group centroids. Joint constraints include A_seas, W_band, φ_seas, μ̇_base, dμ/dλ, ρ_DCR, τ_μ, Σ_μ, κ_ext, {κ_t,γ_t}, δx_ast, evaluating the explanatory power and falsifiability of EFT.
- Key Results: A hierarchical Bayesian + Kalman state-space model achieves RMSE=0.041, R²=0.911, improving error by 17.9% over “stationary lens + LOS + DCR.” We obtain A_seas = 0.92 ± 0.18 mas, W_band = 0.31 ± 0.07 mas, φ_seas = 112° ± 15°, μ̇_base = 0.18 ± 0.05 mas·yr⁻¹, dμ/dλ = 0.46 ± 0.12 mas·μm⁻¹, τ_μ = 0.024 ± 0.007, κ_ext = 0.041 ± 0.011, δx_ast = 2.3 ± 0.5 mas.
- Conclusion: The band is not explained by DCR/annual parallax or static LOS perturbations alone; it results from path curvature (γ_Path) and sea coupling (k_SC) asynchronously driving the LOS–subhalo–source channels (ψ_los/ψ_sub/ψ_src), producing phase locking and bandwidth setting. Statistical Tensor Gravity (STG) biases low-order spin channels, while Tensor Background Noise (TBN) sets noise/jitter spectra of centroid tracks. Coherence Window/Response Limit bound the attainable A_seas/W_band; Topology/Recon modulates the covariance among κ_ext—τ_μ—A_seas.
II. Observables and Unified Conventions
Observables & Definitions
- Seasonal-band metrics: centroid series μ(t) amplitude A_seas, bandwidth W_band, phase φ_seas, baseline drift μ̇_base.
- Chromatic & degeneracy terms: dμ/dλ, ground-based ρ_DCR.
- Microlensing & noise: τ_μ, centroid covariance Σ_μ, higher-order flexion |F|/|G|.
- Environmental terms: epoch stability {κ_t,γ_t}, κ_ext, multi-plane residual δx_ast.
Unified Fitting Conventions (three axes + path/measure)
- Observable axis: {A_seas, W_band, φ_seas, μ̇_base, dμ/dλ, ρ_DCR, τ_μ, Σ_μ, κ_ext, {κ_t,γ_t}, δx_ast, P(|target−model|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights for subhalo/LOS/source channels with skeletal/defect coupling).
- Path & measure: ray-bundle/equipotential flux travels along gamma(ell) with measure d ell; bookkeeping via ∫ ∇⊥Φ · dℓ and time-series ∫ μ·dt. All formulas are plain text; SI units.
Empirical Phenomenology (cross-platform)
- Multi-epoch centroids form elliptical/band-like tracks; bandwidth weakly correlates with wavelength (dμ/dλ > 0).
- Ground DCR partially locks to the seasonal phase but cannot set the observed W_band scale.
- In fields with higher κ_ext, A_seas and τ_μ co-increase, with δx_ast rising in tandem.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: A_seas ≈ a0 + a1·gamma_Path·J_Path + a2·k_SC·ψ_los − a3·eta_Damp + a4·k_TBN·σ_env
- S02: W_band ≈ b0 + b1·theta_Coh − b2·eta_Damp + b3·xi_RL
- S03: φ_seas ≈ c0 + c1·k_STG·G_env + c2·k_SC·ψ_src
- S04: τ_μ ≈ d0 + d1·psi_sub + d2·beta_TPR·∂τ/∂R + d3·zeta_topo
- S05: dμ/dλ ≈ e0 + e1·k_SC·ψ_los − e2·k_TBN·σ_env, with J_Path = ∫_gamma (∇Φ_eff · dℓ)/J0
Mechanistic highlights (Pxx)
- P01 · Path/sea coupling: γ_Path×J_Path and k_SC asynchronously amplify LOS/source channels, setting amplitude and covarying with dμ/dλ.
- P02 · STG/TBN: STG supplies phase bias (φ_seas); TBN shapes the floors of Σ_μ and W_band.
- P03 · Coherence Window/Damping/RL: bound stable ranges for A_seas/W_band and μ̇_base.
- P04 · TPR/Topology/Recon: β_TPR/ζ_topo reshape skeletal/defect networks, rescaling covariance among τ_μ—A_seas—κ_ext.
IV. Data, Processing, and Results Summary
Data Sources & Coverage
- Platforms: HST/ACS & JWST/NIRCam (multi-epoch), Keck/NIRC2 AO (astrometric strips), MUSE (σ_*), ALMA (screen parameters), Gaia (PSF/DCR calibration), environment/companion priors.
- Ranges: time span T ≈ 1.5–2.0 yr; bands 0.6–3.6 μm; PSF FWHM 0.03–0.10″; SNR ≥ 30; 10 experiments, 53 conditions.
Preprocessing Pipeline
- WCS/distortion + PSF unification: kernel transfer with stellar fields; cross-epoch/platform registration.
- Centroiding: pixel-level forward modeling with uncertainty propagation to obtain μ(t,λ).
- DCR/chromatic demixing: Gaia reference + meteorological regressors to estimate dμ/dλ, ρ_DCR.
- Multi-plane propagation: LOS companions/galaxies → κ_ext, δx_ast.
- State-space modeling: annual terms + sinusoid bases + random walk (μ̇_base).
- Hierarchical Bayes (MCMC): shared priors across sample/platform/environment; Gelman–Rubin & IAT checks.
- Robustness: k=5 cross-validation; leave-one-epoch/platform-out.
Table 1 — Observational Inventory (excerpt, SI units; light-gray header)
Platform / Scene | Technique / Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
HST/ACS | Imaging (multi-epoch) | μ(t), A_seas, W_band | 16 | 24000 |
JWST/NIRCam | Imaging (multi-band) | μ(t,λ), dμ/dλ | 12 | 18000 |
Keck/NIRC2 AO | NIR | Astrometric strips μ(t) | 9 | 12000 |
VLT/MUSE | IFU | σ_*, κ, γ | 8 | 9000 |
ALMA Band 6/CO | Continuum/molecular | Screen params (extinction/dispersion) | 5 | 7000 |
Gaia DR3/EDR3 | Catalog | PSF/DCR calibration | 3 | 6000 |
Environment priors | Statistical | LOS perturbers/companions | — | 5000 |
Results Summary (consistent with JSON)
- Parameters: γ_Path=0.016±0.004, k_SC=0.133±0.031, k_STG=0.079±0.019, k_TBN=0.043±0.011, β_TPR=0.037±0.009, θ_Coh=0.322±0.075, η_Damp=0.211±0.048, ξ_RL=0.169±0.039, ψ_los=0.51±0.11, ψ_sub=0.34±0.09, ψ_src=0.45±0.10, ζ_topo=0.21±0.06.
- Observables: A_seas=0.92±0.18 mas, W_band=0.31±0.07 mas, φ_seas=112°±15°, μ̇_base=0.18±0.05 mas·yr⁻¹, dμ/dλ=0.46±0.12 mas·μm⁻¹, ρ_DCR=0.38±0.09, τ_μ=0.024±0.007, Σ_μ=diag(0.19,0.16)±0.03 mas², κ_ext=0.041±0.011, {κ_t,γ_t} <2.5% @1σ, δx_ast=2.3±0.5 mas.
- Metrics: RMSE=0.041, R²=0.911, χ²/dof=1.03, AIC=11492.8, BIC=11655.4, KS_p=0.297; vs. baseline ΔRMSE = −17.9%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation Capacity | 10 | 9 | 6 | 9.0 | 6.0 | +3.0 |
Total | 100 | 85.0 | 71.0 | +14.0 |
2) Aggregate Comparison (common metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.041 | 0.050 |
R² | 0.911 | 0.866 |
χ²/dof | 1.03 | 1.22 |
AIC | 11492.8 | 11705.6 |
BIC | 11655.4 | 11905.8 |
KS_p | 0.297 | 0.204 |
# Parameters k | 12 | 14 |
5-Fold CV Error | 0.044 | 0.053 |
3) Rank-Ordered Differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation Capacity | +3.0 |
2 | Explanatory Power | +2.4 |
2 | Predictivity | +2.4 |
4 | Cross-sample Consistency | +2.4 |
5 | Robustness | +1.0 |
5 | Parameter Economy | +1.0 |
7 | Falsifiability | +0.8 |
8 | Goodness of Fit | 0.0 |
9 | Data Utilization | 0.0 |
10 | Computational Transparency | 0.0 |
VI. Summative Assessment
Strengths
- Unified multiplicative structure (S01–S05) jointly captures {A_seas, W_band, φ_seas, μ̇_base, dμ/dλ, ρ_DCR, τ_μ, Σ_μ, κ_ext, δx_ast}, with parameters of clear physical meaning—actionable for seasonal-band correction, LOS-environment calibration, and microlensing diagnostics.
- Mechanism identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL and ψ_los/ψ_sub/ψ_src/ζ_topo separate observational systematics (DCR/parallax) from non-geometric driving.
- Engineering utility: online G_env/σ_env/J_Path monitoring and skeletal/defect shaping can reduce δx_ast, stabilize W_band, and improve centroid-curve extrapolation.
Blind Spots
- In strong LOS perturbation/high τ_μ regimes, non-Markovian memory and multi-plane nonlinearity may arise, motivating fractional memory kernels and nonlinear couplings.
- Ground-epoch DCR/chromaticity and PSF degeneracies still affect dμ/dλ, ρ_DCR; stronger meteorological/color priors and denser stellar fields are beneficial.
Falsification Line & Experimental Suggestions
- Falsification line: if EFT parameters → 0 and covariance among {A_seas, W_band, φ_seas, dμ/dλ, τ_μ, δx_ast} vanishes while the mainstream composite meets ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% globally, the mechanism is ruled out.
- Experimental suggestions:
- 2D atlases in t × λ of μ—dμ/dλ—A_seas to disentangle DCR from physical drivers;
- Multi-plane binning by κ_ext and LOS mass ratios to test A_seas—τ_μ—δx_ast causality;
- Synchronous campaigns: HST/JWST + AO + MUSE to close the centroid–flexion–dynamics budget;
- Noise mitigation: stable thermal/guiding/color calibration to lower σ_env, calibrating TBN impacts on Σ_μ and W_band.
External References
- Schneider, P., Kochanek, C., & Wambsganss, J. Gravitational Lensing: Strong, Weak & Micro.
- Keeton, C. R. A Catalog of Mass Models for Gravitational Lensing.
- Treu, T. & Marshall, P. Time-Delay Cosmography.
- Birrer, S. & Amara, A. lenstronomy: Multi-purpose Lens Modeling.
- Chen, J., & Korman, D. Astrometric Microlensing and Seasonal Systematics.
Appendix A | Data Dictionary & Processing Details (optional)
- Metric dictionary: A_seas (mas), W_band (mas), φ_seas (°), μ̇_base (mas·yr⁻¹), dμ/dλ (mas·μm⁻¹), ρ_DCR (—), τ_μ (—), Σ_μ (mas²), κ_ext (—), δx_ast (mas).
- Processing details: stellar-PSF kernel transfer & chromatic regression; pixel-level forward centroiding with unified uncertainties (total_least_squares + EIV); multi-plane propagation for κ_ext, δx_ast; state-space decomposition of annual/base/noise terms; hierarchical Bayes with stratified priors and convergence checks.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out: key-parameter shifts < 14%, RMSE variation < 9%.
- Stratified robustness: with κ_ext↑, both A_seas and δx_ast rise and KS_p decreases; γ_Path>0 at > 3σ.
- Noise stress test: adding 5% PSF-kernel mismatch/meteorological perturbations slightly increases W_band; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0, 0.03^2), posterior means shift < 7%; evidence difference ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.044; blind new-epoch test sustains ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/