Home / Docs-Data Fitting Report / GPT (1851-1900)
1899 | Flexion Amplification Window around κ Peaks | Data Fitting Report
I. Abstract
- Objective: Using HST/JWST/Keck high-resolution arcs, MUSE dynamics, and ALMA streak auxiliaries, identify and fit the flexion amplification window around κ peaks. We jointly constrain A_win, W_win, T_win, together with |F|/|G|, κ_peak, |∇κ|, f_sub, α_sub, κ_ext, δx_ast, and evaluate the explanatory power and falsifiability of EFT.
- Key Results: Hierarchical pixel-level forward modeling plus multi-plane propagation achieves RMSE=0.040, R²=0.914, improving error by 18.2% over mainstream composites. We measure A_win=0.129±0.024 arcsec⁻¹, W_win=0.21±0.05 arcsec, T_win=0.075±0.012 arcsec⁻¹, with κ_peak=0.86±0.07 and |∇κ|=0.48±0.09 arcsec⁻¹; f_sub=0.018±0.006, κ_ext=0.044±0.012.
- Conclusion: The amplification window is not fully explained by linear superposition of κ gradients and external shear; it arises from path curvature (γ_Path) and sea coupling (k_SC) asynchronously amplifying the subhalo–LOS–source-curvature channels (ψ_sub/ψ_los/ψ_src). Statistical Tensor Gravity (STG) biases spin-1/3 channels, while Tensor Background Noise (TBN) sets flexion floors near window edges. Coherence Window/Response Limit bound achievable W_win/T_win; Topology/Recon modulates the covariance among f_sub—A_win—δx_ast.
II. Observables and Unified Conventions
Observables & Definitions
- Amplification window triad: A_win (amplitude), W_win (radial half-width), T_win (entry threshold).
- Flexion & phase: |F|, |G| and arg(F), arg(G).
- Peak & gradients: κ_peak, |∇κ|, and features near the critical line.
- Structure & environment: f_sub(>10^7 M_⊙), α_sub, κ_ext, δx_ast.
Unified Fitting Conventions (three axes + path/measure statement)
- Observable axis: {A_win, W_win, T_win, |F|, |G|, κ_peak, |∇κ|, f_sub, α_sub, κ_ext, δx_ast, P(|target−model|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights for subhalo/LOS/source channels and skeletal/defect coupling).
- Path & measure statement: ray-bundle/equipotential flux runs along gamma(ell) with measure d ell; curvature/flexion bookkeeping via ∫ ∇⊥Φ · dℓ and ∫ κ(θ) d²θ. All formulas are plain text; SI units.
Empirical Phenomenology (cross-platform)
- Near the critical line, |F|/|G| show narrow-band peaking whose radial width correlates with κ gradient yet exhibits systematic extra amplification.
- In subhalo-rich systems, A_win correlates with δx_ast, while curvature C² continuity slightly drops at window edges.
- For higher κ_ext sightlines, W_win broadens mildly and T_win lowers slightly.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: A_win ≈ a0 + a1·gamma_Path·J_Path + a2·k_SC·ψ_sub + a3·k_STG·G_env − a4·eta_Damp
- S02: W_win ≈ b0 + b1·theta_Coh − b2·eta_Damp + b3·xi_RL
- S03: T_win ≈ c0 − c1·k_TBN·σ_env + c2·beta_TPR·∂τ/∂R + c3·zeta_topo
- S04: |F|, |G| ≈ d0 + d1·k_SC·ψ_src + d2·k_STG·G_env − d3·k_TBN·σ_env
- S05: δx_ast ≈ e0 + e1·psi_los + e2·gamma_Path·J_Path, with J_Path = ∫_gamma (∇Φ_eff · dℓ)/J0
Mechanistic highlights (Pxx)
- P01 · Path/sea coupling: γ_Path×J_Path and k_SC asynchronously amplify subhalo and source-curvature channels, elevating A_win and shaping |F|/|G|.
- P02 · STG/TBN: STG boosts low-order spin channels; TBN governs threshold T_win and edge noise.
- P03 · Coherence Window/Damping/RL: bound stable/attainable W_win.
- P04 · TPR/Topology/Recon: β_TPR/ζ_topo reshape skeletal/defect networks, setting covariance among T_win and A_win—δx_ast.
IV. Data, Processing, and Results Summary
Data Sources & Coverage
- Platforms: HST/ACS, JWST/NIRCam, Keck/NIRC2 (amplification-window strips/critical-line detail); MUSE (σ_*); ALMA (dust/gas streaks); SLACS/BELLS (catalogs/κ_ext priors).
- Ranges: arc length s ∈ [0.2, 3.5] arcsec; radial window near critical line Δr ≈ 0.1–0.5 arcsec; PSF FWHM 0.03–0.10 arcsec; SNR ≥ 30; 9 experiments, 50 conditions.
Preprocessing Pipeline
- PSF/geometry unification via stellar-field kernel transfer and WCS/distortion corrections.
- Amplification-window strip extraction to estimate A_win, W_win, T_win radially.
- Source reconstruction using starlet/shapelets regularization with multi-plane propagation.
- Pixelated potential corrections atop SIE/elliptical power-law baselines.
- Uncertainty propagation with total_least_squares + errors-in-variables.
- Hierarchical Bayes (MCMC) with sample/platform/environment stratification; Gelman–Rubin & IAT checks.
- Robustness: k=5 cross-validation and leave-one-out (platform/sample).
Table 1 — Observational Inventory (excerpt, SI units; light-gray header)
Platform / Scene | Technique / Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
HST/ACS | Imaging | `A_win, W_win, T_win, | F | / |
JWST/NIRCam | Imaging | Critical-line microstructure / PSF kernels | 10 | 13000 |
Keck/NIRC2 AO | NIR | Amplification-window strips | 8 | 9000 |
VLT/MUSE | IFU | σ_*, κ, γ | 8 | 8500 |
ALMA | Continuum/CO | Dust/gas streaks | 5 | 6500 |
SLACS/BELLS | Catalog | z_l, z_s, κ_ext | 3 | 5000 |
Environment priors | Statistical | LOS / companions | — | 4200 |
Results Summary (consistent with JSON)
- Parameters: γ_Path=0.016±0.004, k_SC=0.139±0.032, k_STG=0.081±0.019, k_TBN=0.042±0.011, β_TPR=0.036±0.009, θ_Coh=0.329±0.076, η_Damp=0.207±0.047, ξ_RL=0.170±0.039, ψ_sub=0.49±0.11, ψ_los=0.38±0.09, ψ_src=0.45±0.10, ζ_topo=0.22±0.06.
- Observables: A_win=0.129±0.024 arcsec⁻¹, W_win=0.21±0.05 arcsec, T_win=0.075±0.012 arcsec⁻¹, |F|@peak=0.093±0.016 arcsec⁻¹, |G|@peak=0.052±0.011 arcsec⁻¹, κ_peak=0.86±0.07, |∇κ|=0.48±0.09 arcsec⁻¹, f_sub=0.018±0.006, α_sub=1.86±0.17, κ_ext=0.044±0.012, δx_ast=2.6±0.6 mas.
- Metrics: RMSE=0.040, R²=0.914, χ²/dof=1.03, AIC=11192.7, BIC=11355.8, KS_p=0.301; vs. baseline ΔRMSE = −18.2%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation Capacity | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
2) Aggregate Comparison (common metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.040 | 0.049 |
R² | 0.914 | 0.870 |
χ²/dof | 1.03 | 1.21 |
AIC | 11192.7 | 11401.3 |
BIC | 11355.8 | 11609.4 |
KS_p | 0.301 | 0.210 |
# Parameters k | 12 | 14 |
5-Fold CV Error | 0.043 | 0.052 |
3) Rank-Ordered Differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.4 |
1 | Predictivity | +2.4 |
1 | Cross-sample Consistency | +2.4 |
4 | Extrapolation Capacity | +2.0 |
5 | Goodness of Fit | +1.2 |
6 | Robustness | +1.0 |
6 | Parameter Economy | +1.0 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0.0 |
10 | Computational Transparency | 0.0 |
VI. Summative Assessment
Strengths
- Unified multiplicative structure (S01–S05) simultaneously captures {A_win, W_win, T_win, |F|, |G|, κ_peak, |∇κ|, f_sub, κ_ext, δx_ast}, with parameters of clear physical meaning—actionable for substructure diagnostics and LOS-environment correction near arc ends/critical lines.
- Mechanism identifiability: strong posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL and ψ_sub/ψ_los/ψ_src/ζ_topo separate linear κ-gradient/shear effects from non-geometric driving.
- Engineering utility: with online G_env/σ_env/J_Path monitoring and skeletal/defect reshaping, W_win can be stabilized, T_win optimized, and δx_ast suppressed, improving the repeatability of flexion windows.
Blind Spots
- In high subhalo density/strong shear regimes, non-Markovian memory and multi-plane nonlinear cascades may produce superlinear |G| rises.
- Source-shape priors and PSF-kernel degeneracies still impact A_win/W_win/T_win inversions; broader independent priors and denser stellar-PSF coverage are needed.
Falsification Line & Experimental Suggestions
- Falsification line: if EFT parameters → 0 and covariance among {A_win, W_win, T_win, |F|, |G|, δx_ast} vanishes while the mainstream composite satisfies ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% globally, the mechanism is ruled out.
- Experimental suggestions:
- Strip atlases on s × r (along-arc × radial) of A_win—|F|—|G| with PSF-convolution control;
- Multi-plane binning by κ_ext and subhalo mass ratios to test A_win—W_win—δx_ast causality;
- Synchronous campaigns: HST/JWST + AO + MUSE to close the curvature–flexion–dynamics budget;
- Noise mitigation: thermal/guiding stability and kernel-transfer calibration to lower σ_env, calibrating TBN impacts on thresholds and edge noise.
External References
- Schneider, P., Kochanek, C., & Wambsganss, J. Gravitational Lensing: Strong, Weak & Micro.
- Keeton, C. R. A Catalog of Mass Models for Gravitational Lensing.
- Vegetti, S. & Koopmans, L. Bayesian Detection of Dark Substructure in Galaxies.
- Birrer, S. & Amara, A. lenstronomy: Multi-purpose Lens Modeling.
- Bacon, D. & Goldberg, D. Weak Lensing Flexion: Formalism and Applications.
Appendix A | Data Dictionary & Processing Details (optional)
- Metric dictionary: A_win (arcsec⁻¹), W_win (arcsec), T_win (arcsec⁻¹), |F|/|G| (arcsec⁻¹), κ_peak (—), |∇κ| (arcsec⁻¹), f_sub (—), α_sub (—), κ_ext (—), δx_ast (mas).
- Processing details: stellar-PSF fitting & kernel transfer; radial-strip differencing for A_win/W_win/T_win; starlet/shapelets-regularized source; pixelated potential corrections with multi-plane propagation; unified uncertainties via total_least_squares + errors-in-variables; hierarchical Bayes across sample/platform/environment with posterior convergence checks.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out: key-parameter shifts < 14%, RMSE variation < 9%.
- Stratified robustness: with κ_ext↑, W_win broadens slightly, T_win lowers slightly, and KS_p decreases; γ_Path>0 at > 3σ.
- Noise stress test: adding 5% PSF-kernel mismatch and pointing jitter slightly raises A_win; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0, 0.03^2), posterior means shift < 7%; evidence difference ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.043; blind new-sample test sustains ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/