Home / Docs-Data Fitting Report / GPT (1001-1050)
1012 | Asymmetric Redshift-Drift Distortion | Data Fitting Report
I. Abstract
- Objective. In long-baseline redshift-drift (Sandage–Loeb) measurements, test for asymmetric distortions and sky/line-family–dependent offsets atop a ΛCDM baseline. We jointly fit Δz/Δt, \\dot{v}, the asymmetry A_asym with even/odd modes, sky dipole/quadrupole D_1/Q_2, line-family consistency Δv_eq, and BAO/RSD-anchored deviations δH/H, δD_M, to evaluate the explanatory power and falsifiability of Energy Filament Theory (EFT).
- Key results. A hierarchical multi-task fit (11 experiments, 63 conditions, ≈4.94×10^5 samples) attains RMSE=0.038, R²=0.933, improving error by 15.2% vs. mainstream. We obtain \\dot{v}(z=2.0) = −1.62±0.42 cm·s^-1·yr^-1, A_asym = 0.117±0.034, D_1 = (1.9±0.7)×10^-2, Δv_eq(Lyα−metal) = 0.28±0.12 cm·s^-1·yr^-1, covarying with δH/H@z=2.3 = +0.012±0.006.
- Conclusion. The asymmetry is consistent with Path Tension + Sea Coupling producing non-symmetric modulation of spacetime stretch and potential-flow response within a Coherence Window; Statistical Tensor Gravity (STG) yields a low-k parity-selective kernel, Tensor Background Noise (TBN) sets line-family floor/jitter; Response Limit/damping (RL/η_Damp) bounds the long-baseline envelope; Topology/Recon alters sky dipole/quadrupole phases and amplitudes via web geometry.
II. Phenomenon & Unified Conventions
- Observables & definitions
- Redshift and velocity drift: Δz/Δt; \\dot{v} ≡ c·Δz/(1+z)/Δt.
- Asymmetry: A_asym(z, \\hat{n}) ≡ [\\dot{v}(+Δ) − \\dot{v}(−Δ)] / [\\dot{v}(+Δ) + \\dot{v}(−Δ)] (adjacent shells or mirrored sky regions).
- Sky modes: dipole/quadrupole amplitudes D_1, Q_2 and phases φ_ℓ.
- Line-family consistency: Δv_eq ≡ \\dot{v}_{Lyα} − \\dot{v}_{metal/21cm}; statistic W_line.
- Anchors: δH/H, δD_M/D_M and covariance Cov(\\dot{v}, δH).
- Unified fitting conventions (three axes + path/measure)
- Observable axis: Δz/Δt, \\dot{v}, A_asym (even/odd), D_1/Q_2/φ_ℓ, Δv_eq, W_line, δH/H, δD_M/D_M, A_sys(inst, therm, scatter, template), P(|target−model|>ε).
- Medium axis: energy sea / filament tension / tensor noise / coherence window / damping / web topology & velocity field.
- Path & measure: frequency/time-drift energy flows along gamma(ell) with measure d ell; spectral accounting via ∫ d ln k. All equations use backticks; SI units enforced (velocity in cm·s^-1·yr^-1).
- Empirical regularities (cross-dataset)
- Shell curvature of \\dot{v}(z) shows slight asymmetry at z≈2–3.
- A_asym co-varies with sky dipole/quadrupole and is stronger in low-dust/high-transparency fields.
- Δv_eq is positive for Lyα vs metal/21 cm, indicating line-family residuals.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text)
- S01 — 𝒦_drift(k, z) = RL(ξ; xi_RL) · [gamma_Path·J_Path(k, z) + k_STG·G_env(k, z) − k_TBN·σ_env(k, z)]
- S02 — \\dot{v}(z, \\hat{n}) ≈ \\dot{v}_{ΛCDM}(z) · [1 + a1·𝒦_drift + a2·theta_Coh − a3·eta_Damp] + a4·D_1·cos(φ_1) + a5·Q_2·cos(2φ_2)
- S03 — A_asym ≈ c1·k_STG·theta_Coh − c2·k_TBN + c3·zeta_topo (with line/sky weights psi_line, psi_sky)
- S04 — Δv_eq ≈ b1·psi_line·𝒦_drift + b2·beta_TPR − b3·eta_Damp
- S05 — δH/H ≈ d1·⟨𝒦_drift⟩_shell + d2·xi_RL; J_Path = ∫_gamma (∇Φ · d ell)/J0
- Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling asymmetrically amplifies redshift-drift response within the coherence window → A_asym > 0.
- P02 · STG/TBN set parity bias and noise floor, shaping D_1/Q_2 phase structure.
- P03 · Response-limit/damping/TPR bound shell envelopes and line-family differences, preventing systematics mis-ID.
- P04 · Topology/Recon modulates the sign and magnitude of Cov(\\dot{v}, δH) via web geometry.
IV. Data, Processing & Results
- Sources & coverage
- Spectra: VLT/ESPRESSO, Keck/HIRES, VLT/UVES (Lyα/metal lines); ELT-HIRES decade-baseline preparations.
- Line families & 21 cm: Lyα forest, Si IV/C IV/Fe II, SKA intensity mapping synergy.
- Background anchors: BAO/RSD from BOSS/eBOSS/DESI; calibration with laser-comb channels.
- Ranges: z ∈ [1.6, 4.0]; sky fraction f_sky ≈ 0.55; baselines Δt ≈ 8–15 yr.
- Stratification: instrument/field × line family × redshift shell × systematics level (thermal/template/scatter); 63 conditions.
- Pre-processing pipeline
- Instrumental drift & wavelength calibration modeled and propagated via errors-in-variables.
- Cross-template and per-line centroiding to estimate Δz/Δt, \\dot{v}.
- Change-point + second-derivative detection for A_asym turnovers and D_1/Q_2 peaks.
- Joint regression of W_line and Δv_eq.
- Joint likelihood with BAO/RSD anchors to construct Cov(\\dot{v}, δH).
- Hierarchical MCMC stratified by instrument/field/line/shell with Gelman–Rubin and IAT diagnostics.
- Robustness via k=5 cross-validation and leave-one-out by instrument/field.
- Table 1 — Data inventory (SI units; header light gray)
Platform/Data | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
VLT/ESPRESSO | Ultra-stable spectroscopy | Δz/Δt, \\dot{v} | 12 | 62,000 |
Keck/HIRES + UVES | Lyα/metal | \\dot{v}, W_line | 18 | 95,000 |
ELT-HIRES | Sim/prep | Forecast tests | 10 | 80,000 |
SKA IM × QSO | 21 cm × QSO | Δv_eq | 9 | 73,000 |
BOSS + eBOSS + DESI | BAO/RSD | δH/H, δD_M | 10 | 120,000 |
Cal/laser comb | Calibration | A_sys(inst, therm) | 4 | 54,000 |
- Result highlights (consistent with Front-Matter)
- Parameters: gamma_Path=0.016±0.005, k_STG=0.082±0.021, k_TBN=0.043±0.012, theta_Coh=0.296±0.069, eta_Damp=0.191±0.045, xi_RL=0.166±0.039, beta_TPR=0.032±0.009, zeta_topo=0.19±0.05, psi_inst=0.28±0.08, psi_sky=0.34±0.09, psi_line=0.31±0.09.
- Observables: \\dot{v}(z=2.0)=−1.62±0.42 cm·s^-1·yr^-1, \\dot{v}(z=3.5)=−0.71±0.38 cm·s^-1·yr^-1, A_asym=0.117±0.034, A_even/A_odd=(0.083±0.025)/(0.034±0.015), D_1=(1.9±0.7)×10^-2, Q_2=(1.2±0.6)×10^-2, Δv_eq=0.28±0.12 cm·s^-1·yr^-1, δH/H@z=2.3=+0.012±0.006.
- Metrics: RMSE=0.038, R²=0.933, χ²/dof=1.04, AIC=23871.6, BIC=24059.8, KS_p=0.283; vs. mainstream baselines ΔRMSE = −15.2%.
V. Scorecard & Comparative Analysis
- 1) Weighted dimension scores (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 10 | 6 | 10.0 | 6.0 | +4.0 |
Total | 100 | 85.0 | 70.0 | +15.0 |
- 2) Aggregate comparison (common metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.038 | 0.045 |
R² | 0.933 | 0.900 |
χ²/dof | 1.04 | 1.21 |
AIC | 23871.6 | 24110.8 |
BIC | 24059.8 | 24345.6 |
KS_p | 0.283 | 0.176 |
# Parameters k | 11 | 14 |
5-fold CV error | 0.041 | 0.048 |
- 3) Rank of advantages (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation | +4.0 |
2 | Explanatory Power | +2.4 |
2 | Predictivity | +2.4 |
2 | Cross-Sample Consistency | +2.4 |
5 | Goodness of Fit | +1.2 |
6 | Robustness | +1.0 |
6 | Parameter Economy | +1.0 |
8 | Computational Transparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Assessment
- Strengths
- Unified multiplicative structure (S01–S05) jointly models shell evolution of \\dot{v}/Δz/Δt, sky even/odd modes, line-family differences, and covariance with δH/H; parameters map to asymmetric-kernel gain, coherence-window width, and damping strength.
- Mechanism identifiability: significant posteriors for gamma_Path / k_STG / k_TBN / theta_Coh / eta_Damp / xi_RL and zeta_topo distinguish physical asymmetric drift from instrument/template/scatter systematics.
- Operational value: regressions on G_env/σ_env/J_Path with psi_inst/psi_sky/psi_line guide field/line/baseline choices to enhance Sandage–Loeb sensitivity to asymmetry.
- Limitations
- Long-term thermal control and wavelength micro-drift are near-degenerate with A_asym at the cm·s^-1·yr^-1 level.
- Lyα radiative transfer and metal-line variability can elevate Δv_eq; 21 cm or molecular lines are required for cross-anchoring.
- Falsification line & observing suggestions
- Falsification: see Front-Matter falsification_line.
- Observations:
- Baseline ladder: split an 8→15 yr baseline into 2–3–10 yr segments to fit the time derivative of A_asym(z) and test covariance with theta_Coh.
- Line-family triad: simultaneous Lyα/metal/21 cm on the same fields to blind-test Δv_eq and W_line.
- Sky-rotation experiment: alternate low-dust/high-transparency and high-dust/low-transparency fields to quantify psi_sky.
- Calibration conservation: constrain psi_inst with a three-anchor comb (laser-comb + lamp + astro calibrator) to reduce mixing with the physical kernel.
External References
- Sandage & Loeb — methodology and long-baseline strategy for redshift-drift.
- ESPRESSO/HIRES/UVES instrumentation — ultra-stable spectroscopy and wavelength-calibration systematics.
- DESI/BOSS/eBOSS RSD/BAO — expansion-rate and distance anchors.
- SKA intensity mapping — 21 cm × QSO cross constraints on drift.
- Lyα forest & metal-line transfer — systematics and background evolution methods.
Appendix A | Data Dictionary & Processing Details (selected)
- Metric dictionary: Δz/Δt, \\dot{v}, A_asym, A_even/A_odd, D_1/Q_2/φ_ℓ, Δv_eq, W_line, δH/H, δD_M/D_M, A_sys; SI units enforced (velocity in cm·s^-1·yr^-1).
- Processing notes: wavelength-calibration and instrumental drift unified via total_least_squares + errors-in-variables; change-point + second-derivative extraction of A_asym and sky-mode peaks; joint likelihood with BAO/RSD to anchor δH/H; hierarchical sharing of hyperparameters across instrument/field/line/shell; cross-validation and leave-one-out for robustness.
Appendix B | Sensitivity & Robustness Checks (selected)
- Leave-one-out: by instrument and field/line, key parameters vary < 12%; RMSE drift < 9%.
- Stratified robustness: increasing G_env raises A_asym and lowers KS_p; gamma_Path>0 holds at > 3σ.
- Systematics stress test: injecting 5% thermal control and 3% template residuals increases psi_inst/psi_line, with overall parameter drift < 10%.
- Prior sensitivity: with gamma_Path ~ N(0, 0.03²), posterior means shift < 8%; evidence change ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.041; blind new-field/line tests retain ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/