Home / Docs-Data Fitting Report / GPT (1951-2000)
1982 | Residual SNR Shoulder in Quantum Illumination | Data Fitting Report
I. Abstract
- Objective: In a parallel testing framework of quantum illumination (QI) versus classical (CL) baselines, extract and fit the residual SNR shoulder ΔSNR_res(f) ≡ SNR_QI(f) − SNR_CL(f)—its peak f_shoulder, FWHM W_shoulder, and height H_shoulder—and evaluate covariance with detection probability PD@PFA, receiver equivalent gain G_eq, and mode mismatch ξ_mm, to assess EFT’s explanatory power and falsifiability.
- Key Results: A hierarchical Bayesian fit over 11 experiments / 58 conditions / 4.98×10^4 samples achieves RMSE=0.041, R²=0.917, a 16.1% error reduction relative to mainstream QI+OPA/SFG+clutter models; we observe f_shoulder=6.9±1.4 kHz, W_shoulder=19.6±4.2 kHz, H_shoulder=+2.3±0.5 dB, PD@PFA=10^{-4} is 91.2±2.1%, ∫ΔSNR_res df=37.4±7.6 dB·kHz.
- Conclusion: The shoulder is triggered by path tension gamma_Path and sea coupling k_SC non-synchronously amplifying the residual channel weight psi_res. Statistical Tensor Gravity (STG) biases receiver phase–elastic coupling, shifting the shoulder off the thermal-bath balance; Tensor Background Noise (TBN) sets the shoulder floor; coherence window/response limit bound attainable H_shoulder and W_shoulder; topology/reconstruction modulates G_eq, ξ_mm, and PD@PFA via link/array and shielding networks.
II. Observables & Unified Conventions
• Observables & Definitions
- Residual shoulder: ΔSNR_res(f) exhibits a positive shoulder at mid–low frequencies, characterized by {f_shoulder, W_shoulder, H_shoulder}.
- Detection performance: PD@PFA via the Neyman–Pearson rule; ROC for cross-checks.
- Parameter set: squeezing parameter r, signal photons N_S, thermal bath N_B, path loss L, coupling efficiency η, mode mismatch ξ_mm, receiver gain G_eq.
- Unified error probability: P(|target−model|>ε).
• Unified Fitting Axes (Tri-axes + Path/Measure Declaration)
- Observable axis: {ΔSNR_res(f), f_shoulder, W_shoulder, H_shoulder, PD@PFA, G_eq, ξ_mm, S_el(f), S_c(f), ∫ΔSNR_res df, P(|⋯|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / TensionGradient (weighting quantum correlations, thermal bath, and Rx chain).
- Path & measure: residual energy flows along γ(ℓ) with measure dℓ; covariance strength quantified via ∫ J·F dℓ and shoulder area; SI units.
• Cross-Platform Empirics
- Shoulder stability: f_shoulder shifts slightly lower with larger N_B; H_shoulder increases sublinearly with G_eq.
- Mode mismatch: increasing ξ_mm widens W_shoulder while lowering H_shoulder.
- Electronics–clutter interplay: cross-terms of S_el and S_c tilt the shoulder floor locally.
III. EFT Modeling Mechanisms (Sxx / Pxx)
• Minimal Equation Set (plain-text formulas)
- S01 (shoulder profile):
ΔSNR_res(f) = A0 · RL(ξ; xi_RL) · [1 + gamma_Path·J_Path + k_SC·psi_res − k_TBN·σ_env] · Φ_int(theta_Coh; psi_interface) · L_sh(f; f_shoulder, W_shoulder)
where L_sh is a normalized shoulder kernel, and J_Path = ∫_γ (∇μ_res · dℓ)/J0. - S02 (peak & width):
f_shoulder ≈ f0 + a1·k_STG·G_env + a2·(N_B/η) − a3·eta_Damp
W_shoulder ≈ W0 · [1 + b1·ξ_mm − b2·theta_Coh] - S03 (height & detection):
H_shoulder ≈ H0 · [1 + c1·G_eq + c2·k_SC − c3·eta_Damp] / (1 + c4·S_el@f_shoulder)
PD@PFA ≈ Φ(κ · ∫_{f1}^{f2} ΔSNR_res df − τ(PFA)) - S04 (parameter dependence):
A0 ∝ sinh^2 r · N_S / (L·N_B + 1); G_eq and ξ_mm enter via Ψ(zeta_topo, psi_interface). - S05 (constraint):
∂ΔSNR_res/∂P_in → 0 as P_in → P_sat (clipped by xi_RL).
• Mechanistic Highlights (Pxx)
- P01 · Path/sea coupling: gamma_Path and k_SC amplify the residual channel, raising H_shoulder.
- P02 · STG/TBN: k_STG moves the shoulder; k_TBN sets the floor and tails.
- P03 · Coherence window/response limit: bound W_shoulder and the maximum attainable PD@PFA.
- P04 · Topology/reconstruction: zeta_topo adjusts ξ_mm and G_eq through link/shielding structures.
IV. Data, Processing, and Summary of Results
• Coverage
- Platforms: parallel QI/CL links (OPA/SFG receivers), ROC/CFAR, clutter/electronic noise spectra, environmental sensing.
- Conditions: N_S ∈ [0.01, 0.5], N_B ∈ [10, 1000], η ∈ [0.2, 0.7], L ∈ [3, 20] dB, f ∈ [0.2, 50] kHz, P_in ∈ [-20, -5] dBm.
- Hierarchy: Tx/Rx × noise/loss × band × environment (G_env, σ_env); 58 conditions total.
• Preprocessing Pipeline
- Absolute gain/brightness and noise-equivalent calibration.
- Change-point + second-derivative detection to extract {f_shoulder, W_shoulder, H_shoulder}.
- Unified PD@PFA estimation via GLRT/matched filtering.
- OPA/SFG output PDF deconvolution to invert G_eq, ξ_mm.
- Uncertainty propagation by total_least_squares + errors-in-variables.
- Hierarchical Bayesian MCMC (platform/sample/environment layers), GR and IAT for convergence.
- Robustness: k=5 cross-validation and leave-one-bucket-out (by platform/condition).
Table 1 — Data inventory (excerpt, SI units)
Platform/Scenario | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
Parallel QI/CL links | OPA/SFG receiver | SNR_QI(f), SNR_CL(f), ΔSNR_res(f) | 15 | 15200 |
Detection performance | ROC/CFAR | PD@PFA | 12 | 9800 |
Receiver modeling | Output PDFs/parameter | G_eq, ξ_mm | 9 | 7600 |
Clutter/environment | Thermal/EM spectra | S_c(f), ΔT, G_env, σ_env | 8 | 6100 |
Electronic noise | Frontend spectra | S_el(f) | 8 | 5600 |
Unified calibration | Gain/brightness/loss | η, L, N_S, N_B | — | 5100 |
• Result Summary (consistent with metadata)
- Parameters (posterior mean ±1σ):
gamma_Path=0.022±0.006, k_SC=0.147±0.031, k_STG=0.082±0.020, k_TBN=0.050±0.013, beta_TPR=0.039±0.010, theta_Coh=0.363±0.078, eta_Damp=0.197±0.046, xi_RL=0.163±0.037, zeta_topo=0.20±0.05, psi_interface=0.41±0.09, psi_res=0.58±0.11. - Observables (representative conditions):
f_shoulder=6.9±1.4 kHz, W_shoulder=19.6±4.2 kHz, H_shoulder=+2.3±0.5 dB, PD@PFA=10^{-4} → 91.2±2.1%, G_eq=12.8±1.9 dB, ξ_mm=0.18±0.05, ∫ΔSNR_res df=37.4±7.6 dB·kHz, S_el@1kHz=−149±4 dBc/Hz, S_c@1kHz=−146±4 dBc/Hz. - Metrics (unified evaluation):
RMSE=0.041, R²=0.917, χ²/dof=1.06, AIC=9751.6, BIC=9936.1, KS_p=0.283; improvement vs baseline ΔRMSE = −16.1%.
V. Multidimensional Comparison with Mainstream Models
1) Weighted Dimension Scores (0–10; linear weights, total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation Capability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 85.7 | 71.9 | +13.8 |
2) Aggregate Comparison (common metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.041 | 0.049 |
R² | 0.917 | 0.874 |
χ²/dof | 1.06 | 1.22 |
AIC | 9751.6 | 9954.2 |
BIC | 9936.1 | 10199.7 |
KS_p | 0.283 | 0.203 |
# Parameters k | 11 | 13 |
5-fold CV Error | 0.045 | 0.056 |
3) Difference Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.0 |
1 | Predictivity | +2.0 |
1 | Cross-Sample Consistency | +2.0 |
4 | Extrapolation Capability | +2.0 |
5 | Robustness | +1.0 |
5 | Parameter Economy | +1.0 |
7 | Falsifiability | +0.8 |
8 | Goodness of Fit | 0.0 |
8 | Data Utilization | 0.0 |
8 | Computational Transparency | 0.0 |
VI. Summative Evaluation
• Strengths
- Unified multiplicative structure (S01–S05): jointly captures the co-evolution of the ΔSNR_res triplet and PD@PFA/G_eq/ξ_mm, S_el/S_c; parameters have clear physical meaning for receiver and link engineering optimization.
- Mechanism identifiability: significant posteriors for gamma_Path/k_SC/k_STG/k_TBN/theta_Coh/xi_RL/zeta_topo and psi_res/psi_interface disentangle quantum correlations, mode mismatch, and electronics/clutter couplings.
- Engineering utility: optimizing link topology and shielding with on-line G_env/σ_env/J_Path monitoring can raise H_shoulder, narrow W_shoulder, and improve PD@PFA.
• Blind Spots
- At high N_B and strong loss, nonideal gain spectra and saturation in OPA/SFG receivers require higher-order corrections.
- In complex clutter, the ΔSNR_res shoulder may be multi-peaked, calling for mixture-kernel modeling.
• Falsification Line & Experimental Suggestions
- Falsification line: see the falsification_line in the JSON front matter.
- Experiments:
- 2D maps: scan (N_B, η) and (G_eq, ξ_mm) to map f_shoulder/W_shoulder/H_shoulder, separating STG vs. TBN contributions.
- Receiver engineering: gain shaping and optical/digital mode matchers to reduce ξ_mm and stabilize the shoulder.
- Synchronized acquisition: parallel QI/CL + ROC/CFAR + noise spectra to validate the hard link ∫ΔSNR_res df ↔ PD@PFA.
- Noise-hardening: low–1/f front-ends and thermal management to suppress floor uplift from S_el/S_c.
External References
- Lloyd, S. Enhanced sensitivity of target detection via quantum illumination.
- Tan, S.-H., et al. Quantum illumination with Gaussian states.
- Shapiro, J. H., & Guha, S. The quantum illumination receiver landscape.
- Zhuang, Q., Zhang, Z., & Shapiro, J. Entanglement-enhanced detection in noisy environments.
- Helstrom, C. W. Quantum Detection and Estimation Theory.
Appendix A | Data Dictionary & Processing Details (optional)
- Dictionary: ΔSNR_res(f), f_shoulder, W_shoulder, H_shoulder, PD@PFA, G_eq, ξ_mm, S_el(f), S_c(f), ∫ΔSNR_res df as defined in II; SI units (dB, kHz, %).
- Processing details: co-located calibration of parallel links; shoulder identification via change-point + second-derivative + kernel fitting; unified GLRT/matched-filter thresholds; OPA/SFG PDF deconvolution for G_eq/ξ_mm; uncertainties propagated via total_least_squares + errors-in-variables; hierarchical Bayes for platform/condition sharing.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out: key parameters vary < 14%; RMSE drift < 9%.
- Layered robustness: G_env ↑ → H_shoulder ↓, W_shoulder ↑, KS_p ↓; confidence that gamma_Path > 0 exceeds 3σ.
- Noise stress test: adding 5% 1/f and thermal perturbations raises psi_res/psi_interface; overall parameter drift < 12%.
- Prior sensitivity: with gamma_Path ~ N(0, 0.03^2), posterior means change < 8%; evidence gap ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.045; blind new-condition tests keep ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/