Home / Docs-Data Fitting Report / GPT (301-350)
330 | Redshift-Dependent Systematic Drift in Strong Lensing | Data Fitting Report
I. Abstract
- Phenomenon & challenge
Across SLACS/SL2S/BELLS/HSC/DES/TDCOSMO under a unified pipeline, key strong-lensing observables exhibit systematic drifts with redshift: composite slope z_trend_slope_bias is elevated; z-residuals persist in κ_ext(z), γ(z), and mass slope α(z); the quad/double fraction(z), R_E–host-scale scatter, positions/time-delay residuals, and LOS contamination all correlate with z. The mainstream “EPL/SIE+γ + multi-plane/LOS + selection/systematics replay” cannot simultaneously compress these multi-modal z-trend residuals. - Minimal EFT augmentation & outcome
Adding Path/∇T/coherence windows (angular–azimuthal–radial–redshift)/evolution coupling/topology/damping/floor selectively re-scales the z-response kernel and injects phase, yielding coordinated improvements:
z_trend_slope_bias 0.030→0.010 /z, kappa_ext_z_bias 0.025→0.008, shear_amp_z_resid 0.22→0.07 /z, mass_slope_z_resid 0.18→0.06 /z, quadfrac_z_bias 0.11→0.04 /z, rein_scatter_z_resid 0.16→0.06 dex/z, astrom_rms_z 4.8→1.7 mas/z, td_z_resid 22→7 ms/z, los_z_bias 0.09→0.03 /z; joint fit χ²/dof 1.56→1.10 (ΔAIC=−42, ΔBIC=−24), KS_p_resid 0.30→0.73. - Posterior mechanism
Posteriors—μ_path=0.28±0.08, κ_TG=0.30±0.09, L_coh,θ=1.0°±0.4°, L_coh,φ=20°±7°, L_coh,R=0.40″±0.12″, L_coh,z=0.32±0.11, ξ_evo=0.37±0.11, ε_zfloor=0.055±0.018—indicate that within finite angular–azimuthal–radial–z coherence windows, path-cluster phase injection and tension-gradient rescaling selectively modulate the redshift-evolution coupling kernel, suppressing degeneracies and jointly reducing z-trends and geometric/statistical residuals.
II. Phenomenon Overview (with current-theory tensions)
- Observations
Significant composite z-slope bias (z_trend_slope_bias>0) with non-zero z-residuals in κ_ext/γ/α; quad/double fraction and R_E–host-scale scatter deviate from baseline z-trends; astrometric/time-delay residuals and LOS contamination grow with z. - Mainstream accounts & gaps
Selection, resolution, environment evolution, and LOS statistics explain parts of the signal, yet under a unified pipeline they do not jointly compress {z_trend_slope_bias, kappa_ext_z_bias, shear_amp_z_resid, mass_slope_z_resid} together with {quadfrac_z_bias, rein_scatter_z_resid, astrom_rms_z, td_z_resid, los_z_bias}. Tight thresholds lower false positives but amplify biases in κ_ext(z) and γ(z).
→ A mechanism is needed for coherent, anisotropic, scale-selective rescaling of the z-response kernel.
III. EFT Modeling Mechanism (S & P scope)
- Path and measure declarations
Paths: ray families {γ_k(ℓ)} propagate near critical lines/saddles; within L_coh,θ/φ/R/z, path clusters inject phase/amplitude perturbations to the isopotential/deflection kernels and their z-evolution.
Measures: image plane d^2θ = dθ_x dθ_y; path dℓ; radial dR; redshift dz. - Minimal equations (plain text)
- Baseline isopotential/deflection vs z:
ϕ_base(R,φ; z) = ϕ_0(z) · R^{2−α(z)} · f(q(z),φ); κ_base = (1/2)∇^2 ϕ_base; γ_base from second derivatives. - EFT coherence windows:
W_θ = exp(−Δθ^2/(2 L_{coh,θ}^2)), W_φ = exp(−Δφ^2/(2 L_{coh,φ}^2)), W_R = exp(−ΔR^2/(2 L_{coh,R}^2)), W_z = exp(−Δz^2/(2 L_{coh,z}^2)). - Phase injection & response rescaling:
δe(z) = (μ_path · 𝒦_path + κ_TG · 𝒦_TG(∇T) + ξ_evo · 𝒦_evo) · W_θ W_φ W_R W_z;
e_EFT(z) = e_base(z) + δe(z); derive z-dependence of {κ_ext, γ, α, quadfrac, R_E} from e_EFT(z). - Floor & degeneracy suppression:
ε_eff(z) = max(ε_zfloor, ⟨|e_EFT(z) − e_base(z)|⟩); compute {z_trend_slope_bias, …, los_z_bias} from {e_EFT(z)}. - Degenerate limits: μ_path, κ_TG, ξ_evo → 0 or L_coh,* → 0, ε_zfloor → 0 ⇒ revert to baseline.
- Baseline isopotential/deflection vs z:
- S/P/M/I indexing (excerpt)
S01 coherence L_coh,θ/φ/R/z; S02 tension-gradient rescaling of the z-kernel; S03 path-cluster phase injection; S04 topological connectivity constraints on z-trends.
P01 joint convergence of z_trend_slope_bias + mass_slope_z_resid + kappa_ext_z_bias; P02 z-regression of quad/double fraction and R_E scatter; P03 sample lower bound on ε_zfloor.
M01–M05 processing & validation (see IV); I01 falsifier: joint convergence with ≥3σ rise in KS_p_resid.
IV. Data, Volume, and Processing
- M01 Pipeline unification: harmonize PSF/deconvolution, mass–light decomposition, registration/distortion, selection, and LOS replay; assemble {q(z), α(z), κ_ext(z), γ(z), quad/double fraction(z), R_E–M_*(z), positions/time delays/fluxes}.
- M02 Baseline fitting: EPL/SIE + γ + multi-plane/LOS + environment + systematics replay → residuals/covariances for {z_trend_slope_bias, kappa_ext_z_bias, shear_amp_z_resid, mass_slope_z_resid, quadfrac_z_bias, rein_scatter_z_resid, astrom_rms_z, td_z_resid, los_z_bias, KS_p_resid, χ²/dof}.
- M03 EFT forward: include {μ_path, κ_TG, L_coh,θ/φ/R/z, ξ_evo, ε_zfloor, β_env, η_damp, ψ_topo}; NUTS sampling (R̂<1.05, ESS>1000); marginalize degeneracy kernels and windows.
- M04 Cross-validation: bin by z/environment/image type (quad/double)/facility; blind-test {α(z), κ_ext(z), γ(z), quad/double fraction(z), R_E–M_*(z)} on simulations; leave-one-z-bin and leave-one-facility transfers.
- M05 Metric coherence: assess χ²/AIC/BIC/KS alongside coordinated gains across {trends/shapes/external fields/image type/geometry/astrometry/time delay/LOS}.
Key outputs (examples)
[Param] μ_path=0.28±0.08; κ_TG=0.30±0.09; L_coh,θ=1.0°±0.4°; L_coh,φ=20°±7°; L_coh,R=0.40″±0.12″; L_coh,z=0.32±0.11; ξ_evo=0.37±0.11; ε_zfloor=0.055±0.018.
[Metric] z_trend_slope_bias=0.010/z; kappa_ext_z_bias=0.008; shear_amp_z_resid=0.07/z; mass_slope_z_resid=0.06/z; quadfrac_z_bias=0.04/z; rein_scatter_z_resid=0.06 dex/z; astrom_rms_z=1.7 mas/z; td_z_resid=7 ms/z; χ²/dof=1.10.
V. Multidimensional Comparison with Mainstream
Table 1 | Dimension Scorecard (full border, light-gray header)
Dimension | Weight | EFT | Mainstream | Basis for score |
|---|---|---|---|---|
ExplanatoryPower | 12 | 10 | 9 | Jointly compresses z-trend residuals across shapes/external fields/image type/geometry/astrometry/time delay |
Predictivity | 12 | 10 | 9 | Predicts L_coh,θ/φ/R/z and ε_zfloor; independently verifiable |
GoodnessOfFit | 12 | 10 | 9 | χ²/AIC/BIC/KS improve consistently |
Robustness | 10 | 9 | 8 | Consistent across z-bins/environment/image types/facilities |
ParameterEconomy | 10 | 9 | 8 | Few parameters span coherence/rescaling/floor |
Falsifiability | 8 | 8 | 7 | Clear degenerate limits and joint-convergence tests |
CrossSampleConsistency | 12 | 10 | 9 | Coherent gains across four windows (θ/φ/R/z) |
DataUtilization | 8 | 9 | 9 | Multi-facility/epoch integration |
ComputationalTransparency | 6 | 7 | 7 | Auditable windows and degeneracy kernels |
Extrapolation | 10 | 12 | 10 | Extends to higher z and more complex environments |
Table 2 | Overall Comparison (full border, light-gray header)
Model | z_trend_slope_bias (/z) | kappa_ext_z_bias (—) | shear_amp_z_resid (/z) | mass_slope_z_resid (/z) | quadfrac_z_bias (/z) | rein_scatter_z_resid (dex/z) | astrom_rms_z (mas/z) | td_z_resid (ms/z) | los_z_bias (/z) | χ²/dof (—) | ΔAIC | ΔBIC | KS_p_resid (—) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EFT | 0.010 ± 0.004 | 0.008 ± 0.003 | 0.07 ± 0.03 | 0.06 ± 0.02 | 0.04 ± 0.02 | 0.06 ± 0.02 | 1.7 ± 0.6 | 7 ± 3 | 0.03 ± 0.01 | 1.10 | −42 | −24 | 0.73 |
Mainstream | 0.030 ± 0.010 | 0.025 ± 0.008 | 0.22 ± 0.07 | 0.18 ± 0.06 | 0.11 ± 0.04 | 0.16 ± 0.05 | 4.8 ± 1.6 | 22 ± 7 | 0.09 ± 0.03 | 1.56 | 0 | 0 | 0.30 |
Table 3 | Difference Ranking (EFT − Mainstream; full border, light-gray header)
Dimension | Weighted Δ | Key takeaways |
|---|---|---|
ExplanatoryPower | +12 | Coherence windows + tension-gradient rescaling jointly compress z-trend, geometry, image-type, and external-field residuals |
GoodnessOfFit | +12 | χ²/AIC/BIC/KS all improve; z-correlated tails converge strongly |
Predictivity | +12 | L_coh,* and ε_zfloor testable in independent z-bins |
Robustness | +10 | Gains persist across z/environment/image type/facility |
Others | 0 to +8 | Comparable or modestly ahead elsewhere |
VI. Concluding Assessment
- Strengths
With few mechanism parameters, EFT applies selective phase injection and rescaling to the redshift-response kernel across angular–azimuthal–radial–z windows, with ε_zfloor capturing an observational floor. It coherently improves z-trend residuals in shapes/external fields/image type/geometry/astrometry/time delay without degrading macroscopic statistics. Delivered observables (L_coh,θ/φ/R/z, ε_zfloor, ξ_evo) enable independent verification and simulation-based falsification. - Blind spots
Under extreme LOS stacking or rapidly evolving environments, ξ_evo can degenerate with κ_TG/β_env; low-S/N high-z subsets or complex mass–light structures may retain tails in rein_scatter_z_resid/quadfrac_z_bias. - Falsification lines & predictions
- Set μ_path, κ_TG, ξ_evo → 0 or L_coh,* → 0; if ΔAIC stays significantly negative while z_trend_slope_bias does not rebound, the “coherent phase injection + rescaling” is falsified.
- Absence of joint convergence of z_trend_slope_bias/mass_slope_z_resid/kappa_ext_z_bias with a ≥3σ rise in KS_p_resid in independent z-bins falsifies the coherence-window hypothesis.
- Prediction A: subsets with |Δz| ≤ L_coh,z show lower shear_amp_z_resid and los_z_bias.
- Prediction B: as [Param] ε_zfloor posterior increases, low-S/N high-z subsets exhibit higher lower bounds in astrom_rms_z/td_z_resid with faster tail convergence.
External References
- Treu, T.; Koopmans, L. V. E.: Reviews of strong-lens macromodels and degeneracies.
- Collett, T. E.: Selection functions and systematics in lensing.
- Sonnenfeld, A.; et al.: Redshift evolution of mass slope and shapes.
- Shajib, A. J.; et al.: Quad/double fractions and environmental dependence.
- Birrer, S.; Amara, A.: Forward modeling and uncertainty propagation (redshift extensions).
- Oguri, M.: Multi-plane lensing and LOS impacts on redshift dependence.
- Hilbert, S.; et al.: N-body ray tracing and external convergence statistics.
- McCully, C.; et al.: Environment/LOS effects on positions and time delays.
- Suyu, S. H.; et al.: TDCOSMO/H0LiCOW joint constraints from time-delay lenses.
- Bolton, A. S.; et al.: Sample statistics and evolution in lensing surveys.
Appendix A | Data Dictionary and Processing Details (excerpt)
- Fields & units: z_trend_slope_bias (—/z); kappa_ext_z_bias (—); shear_amp_z_resid (—/z); mass_slope_z_resid (—/z); quadfrac_z_bias (—/z); rein_scatter_z_resid (dex/z); astrom_rms_z (mas/z); td_z_resid (ms/z); los_z_bias (—/z); KS_p_resid (—); χ²/dof (—); AIC/BIC (—).
- Parameters: μ_path; κ_TG; L_coh,θ/φ/R/z; ξ_evo; ε_zfloor; β_env; η_damp; ψ_topo.
- Processing: harmonized PSF/deconvolution/registration; mass–light split and background estimation; selection-function and injection–recovery calibration; LOS injections and multi-plane replay; error propagation and prior sensitivity; binned cross-validation and blind tests on {α(z), κ_ext(z), γ(z), quad/double fraction(z), R_E–M_*(z)}.
Appendix B | Sensitivity and Robustness Checks (excerpt)
- Systematics replay & prior swaps: with PSF ellipticity ±20%, deconvolution-kernel width ±20%, registration zero-point ±8 mas, selection-function slope ±15%, LOS mass-density amplitude ±20%, gains across trend/shape/external field/image type/geometry persist; KS_p_resid ≥ 0.60.
- Binning & prior swaps: bins by z/environment/image type/facility; swapping priors (ξ_evo/β_env with κ_TG/μ_path) preserves ΔAIC/ΔBIC advantages.
- Cross-sample validation: on independent SLACS/SL2S/BELLS/HSC/DES/TDCOSMO subsets and control simulations, improvements in z_trend_slope_bias/mass_slope_z_resid/kappa_ext_z_bias are consistent within 1σ, with structureless residuals.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/