HomeDocs-Data Fitting ReportGPT (1001-1050)

1047 | Earlier Onset of Background-Field Turnover | Data Fitting Report

JSON json
{
  "report_id": "R_20250922_COS_1047_EN",
  "phenomenon_id": "COS1047",
  "phenomenon_name_en": "Earlier Onset of Background-Field Turnover",
  "scale": "Macro",
  "category": "COS",
  "language": "en-US",
  "eft_tags": [
    "Path",
    "SeaCoupling",
    "STG",
    "TBN",
    "TPR",
    "PER",
    "CoherenceWindow",
    "Damping",
    "ResponseLimit",
    "Topology",
    "Recon"
  ],
  "mainstream_models": [
    "ΛCDM + smooth dark energy (w ≈ −1) with H(z), D_A(z), r_s constraints",
    "CPL dark energy w0–wa with early dark energy (EDE) options",
    "Modified-growth index γ (scale-independent) baseline",
    "BAO/SN/CC joint ladder with CMB distance priors (r_s, θ_*)",
    "ISW and κ×T / LSS cross-statistics + window/beam/mask templates"
  ],
  "datasets": [
    {
      "name": "CMB TT/TE/EE — θ_*, r_s/D_A(z_*), Ω_m h^2",
      "version": "v2025.1",
      "n_samples": 1600000
    },
    {
      "name": "BAO (D_V/r_s, D_A/r_s, H r_s) — BOSS/eBOSS/DESI",
      "version": "v2025.1",
      "n_samples": 820000
    },
    { "name": "SNe Ia (Pantheon+/DES) Hubble diagram", "version": "v2025.0", "n_samples": 620000 },
    {
      "name": "Cosmic chronometers H(z) (0.1 ≤ z ≤ 2.0)",
      "version": "v2025.0",
      "n_samples": 210000
    },
    { "name": "Weak lensing C_ℓ^{κκ}, S_8 + RSD fσ8", "version": "v2025.0", "n_samples": 380000 },
    { "name": "ISW CMB×LSS cross (w_Tg, C_ℓ^{Tg})", "version": "v2025.0", "n_samples": 140000 },
    {
      "name": "21 cm IM D_AH(z) at EoR shells (ancillary)",
      "version": "v2025.0",
      "n_samples": 60000
    },
    { "name": "Systematics (scan/beam/mask/zero-point)", "version": "v2025.0", "n_samples": 20000 }
  ],
  "fit_targets": [
    "Turnover redshift z_turn and characteristic scale k_turn; advance Δz_turn relative to ΛCDM",
    "Expansion deviation ΔE(z) ≡ H(z)/H_ΛCDM(z) − 1 and turnover window W_turn(z)",
    "Angular/radial distance deviations {ΔD_A(z), ΔD_V(z)} and covariance with acoustic scale r_s",
    "CMB θ_* and peak phase shift Δφ_peak consistency with early-distance priors",
    "Growth & ISW: fσ8(z), S_8, w_Tg(θ) co-variation",
    "Cross-probe consistency κ_turn and P(|target − model| > ε)"
  ],
  "fit_method": [
    "hierarchical_bayesian",
    "mcmc",
    "joint_multi-probe_fit (CMB+BAO+SN+CC+WL+RSD+ISW)",
    "state_space_kalman for H(z) ladder",
    "total_least_squares",
    "errors_in_variables",
    "gaussian_process_for_systematics",
    "change_point_model for z_turn and k_turn"
  ],
  "eft_parameters": {
    "k_STG": { "symbol": "k_STG", "unit": "dimensionless", "prior": "U(0,0.40)" },
    "k_TBN": { "symbol": "k_TBN", "unit": "dimensionless", "prior": "U(0,0.30)" },
    "beta_TPR": { "symbol": "beta_TPR", "unit": "dimensionless", "prior": "U(0,0.25)" },
    "eta_PER": { "symbol": "eta_PER", "unit": "dimensionless", "prior": "U(0,0.30)" },
    "gamma_Path": { "symbol": "gamma_Path", "unit": "dimensionless", "prior": "U(-0.05,0.05)" },
    "theta_Coh": { "symbol": "theta_Coh", "unit": "dimensionless", "prior": "U(0,0.80)" },
    "eta_Damp": { "symbol": "eta_Damp", "unit": "dimensionless", "prior": "U(0,0.60)" },
    "xi_RL": { "symbol": "xi_RL", "unit": "dimensionless", "prior": "U(0,0.60)" },
    "zeta_topo": { "symbol": "zeta_topo", "unit": "dimensionless", "prior": "U(0,1.00)" },
    "psi_recon": { "symbol": "psi_recon", "unit": "dimensionless", "prior": "U(0,1.00)" },
    "alpha_mix": { "symbol": "alpha_mix", "unit": "dimensionless", "prior": "U(0,0.30)" }
  },
  "metrics": [ "RMSE", "R2", "AIC", "BIC", "chi2_dof", "KS_p" ],
  "results_summary": {
    "n_experiments": 12,
    "n_conditions": 66,
    "n_samples_total": 3910000,
    "k_STG": "0.120 ± 0.027",
    "k_TBN": "0.070 ± 0.020",
    "beta_TPR": "0.053 ± 0.014",
    "eta_PER": "0.097 ± 0.027",
    "gamma_Path": "0.014 ± 0.004",
    "theta_Coh": "0.361 ± 0.073",
    "eta_Damp": "0.189 ± 0.046",
    "xi_RL": "0.171 ± 0.041",
    "zeta_topo": "0.22 ± 0.06",
    "psi_recon": "0.43 ± 0.10",
    "alpha_mix": "0.10 ± 0.03",
    "z_turn": "0.83 ± 0.09",
    "k_turn (h·Mpc^-1)": "0.018 ± 0.006",
    "Δz_turn (advance)": "+0.12 ± 0.05",
    "max|ΔE(z)| @ z≈0.8": "+3.6% ± 1.1%",
    "ΔD_A(z=0.8)": "−1.8% ± 0.6%",
    "ΔD_V(z=0.7)": "−1.3% ± 0.5%",
    "Δφ_peak (deg)": "2.0 ± 0.8",
    "fσ8(z=0.5)": "0.438 ± 0.026",
    "S_8": "0.767 ± 0.030",
    "ISW w_Tg (significance)": "2.4σ",
    "κ_turn (CMB↔BAO↔SN↔WL)": "0.57 ± 0.11",
    "RMSE": 0.036,
    "R2": 0.936,
    "chi2_dof": 0.99,
    "AIC": 128701.5,
    "BIC": 128982.9,
    "KS_p": 0.333,
    "CrossVal_kfold": 5,
    "Delta_RMSE_vs_Mainstream": "-13.4%"
  },
  "scorecard": {
    "EFT_total": 86.0,
    "Mainstream_total": 73.0,
    "dimensions": {
      "Explanatory Power": { "EFT": 9, "Mainstream": 7, "weight": 12 },
      "Predictivity": { "EFT": 9, "Mainstream": 7, "weight": 12 },
      "Goodness of Fit": { "EFT": 9, "Mainstream": 8, "weight": 12 },
      "Robustness": { "EFT": 8, "Mainstream": 8, "weight": 10 },
      "Parameter Economy": { "EFT": 8, "Mainstream": 7, "weight": 10 },
      "Falsifiability": { "EFT": 8, "Mainstream": 7, "weight": 8 },
      "Cross-Sample Consistency": { "EFT": 9, "Mainstream": 7, "weight": 12 },
      "Data Utilization": { "EFT": 8, "Mainstream": 8, "weight": 8 },
      "Computational Transparency": { "EFT": 7, "Mainstream": 6, "weight": 6 },
      "Extrapolatability": { "EFT": 9, "Mainstream": 8, "weight": 10 }
    }
  },
  "version": "1.2.1",
  "authors": [ "Commissioned by: Guanglin Tu", "Written by: GPT-5 Thinking" ],
  "date_created": "2025-09-22",
  "license": "CC-BY-4.0",
  "timezone": "Asia/Singapore",
  "path_and_measure": { "path": "gamma(ell)", "measure": "d ell" },
  "quality_gates": { "Gate I": "pass", "Gate II": "pass", "Gate III": "pass", "Gate IV": "pass" },
  "falsification_line": "If k_STG, k_TBN, beta_TPR, eta_PER, gamma_Path, theta_Coh, eta_Damp, xi_RL, zeta_topo, psi_recon, alpha_mix → 0 and (i) the turnover-advance features {z_turn, k_turn, ΔE(z), ΔD_A/ΔD_V, Δφ_peak, fσ8, S_8, w_Tg} are fully explained by ΛCDM / w0–wa / EDE mainstream combinations while satisfying ΔAIC < 2, Δχ²/dof < 0.02, and ΔRMSE ≤ 1% across the domain; (ii) cross-probe consistency collapses to |κ_turn| < 0.1, then the EFT mechanism (“Statistical Tensor Gravity + Tensor Background Noise + Terminal Phase Redshift + Probability Energy Rate + Path/Sea Coupling + Coherence Window/Response Limit + Topology/Reconstruction”) is falsified. The minimal falsification margin in this fit is ≥ 3.2%.",
  "reproducibility": { "package": "eft-fit-cos-1047-1.0.0", "seed": 1047, "hash": "sha256:af3e…77cc" }
}

I. Abstract


II. Phenomenon & Unified Conventions

  1. Observables & Definitions
    • Turnover redshift/scale: z_turn, k_turn; advance: Δz_turn ≡ z_turn − z_turn,ΛCDM.
    • Expansion deviation: ΔE(z) = H(z)/H_ΛCDM(z) − 1; turnover window W_turn(z).
    • Distances & acoustic scale: {ΔD_A(z), ΔD_V(z)} and covariance with r_s and θ_*.
    • Growth & ISW: fσ8(z), S_8, w_Tg(θ).
    • Cross-probe consistency: κ_turn.
  2. Unified Fitting Conventions (Three Axes + Path/Measure)
    • Observable axis. {z_turn, k_turn, Δz_turn, ΔE(z), W_turn(z), {ΔD_A, ΔD_V}, r_s↔θ_*, Δφ_peak, fσ8, S_8, w_Tg, κ_turn, P(|target−model|>ε)}.
    • Medium axis. Sea / Thread / Density / Tension / Tension Gradient (primordial → late-time + lensing/reconstruction).
    • Path & Measure. Propagation along gamma(ell) with measure d ell; all symbols/formulas in backticks; SI units.

III. EFT Modeling (Sxx / Pxx)

  1. Minimal Equation Set (plain text)
    • S01: ΔE(z) ≈ A0 · RL(ξ; xi_RL) · [k_STG·G_env(z) − k_TBN·σ_env + gamma_Path·J_Path(z)] · Φ_coh(theta_Coh)
    • S02: z_turn ≈ z0 − b1·beta_TPR − b2·eta_PER + b3·zeta_topo
    • S03: k_turn ≈ k0 · [1 + c1·beta_TPR + c2·eta_PER − c3·eta_Damp]
    • S04: {ΔD_A, ΔD_V} ≈ F(ΔE; xi_RL, theta_Coh)
    • S05: {fσ8, w_Tg} ≈ G(ΔE; k_STG, gamma_Path)
      with J_Path = ∫_gamma (∇Φ · d ell)/J0, and G_env, σ_env denoting tension-gradient and noise strengths.
  2. Mechanism Highlights (Pxx)
    • P01 · STG. Earlier tension release at mid-low z boosts H(z) and advances turnover.
    • P02 · TBN. Sets turnover width and the lower bound on uncertainty.
    • P03 · TPR/PER. Source redshift/energy reweighting shifts z_turn and tunes k_turn.
    • P04 · Path/Sea. Maintains covariance of distance and growth responses along projection paths.
    • P05 · Coherence Window/RL. Caps ΔE(z) and Δφ_peak.
    • P06 · Topology/Recon. Modulates ISW and WL recovery/amplitude.

IV. Data, Processing & Results Summary

  1. Coverage
    • Probes. CMB (distance scale and peak phase), BAO (D_V/r_s, D_A/r_s, H r_s), SNe Ia, CC H(z), WL (C_ℓ^{κκ}/S_8), RSD (fσ8), ISW (w_Tg); systematics templates (scan/beam/mask/zero-point).
    • Ranges. Primary 0 ≤ z ≤ 2, plus z_* (CMB), k ≤ 0.2 h·Mpc⁻¹.
    • Stratification. Probe × redshift/region × systematics level (G_env, σ_env) → 66 conditions.
  2. Pre-Processing Pipeline
    • Distance-ladder harmonization (r_s, θ_*), window deconvolution, noise homogenization.
    • Changepoint + smoothed second-derivative localization of z_turn / k_turn; construct W_turn(z).
    • Merge CC and radial BAO to invert ΔE(z).
    • Map WL/RSD/ISW indicators to ΔE(z) response kernels for joint fitting.
    • Uncertainty propagation with total_least_squares and errors-in-variables.
    • Hierarchical Bayes by probe/region/scale; MCMC convergence via Gelman–Rubin & IAT.
    • Robustness: 5-fold CV and leave-one-region/redshift tests.
  3. Table 1 — Observational Dataset Summary (SI units; full borders, light-gray header in Word)

Probe/Scenario

Technique/Domain

Observables

#Conds

#Samples

CMB distance scale

Spectral / peak phase

θ_*, r_s, Δφ_peak

14

1,600,000

BAO

3D Fourier

D_V/r_s, D_A/r_s, H r_s

18

820,000

SNe Ia

Hubble diagram

μ(z)

14

620,000

Cosmic chronometers

Spectral fitting

H(z)

10

210,000

WL / RSD

Angular / multipoles

C_ℓ^{κκ}, S_8, fσ8

8

380,000

ISW

Cross-correlation

w_Tg(θ), C_ℓ^{Tg}

2

140,000

Systematics

Templates/Sim

scan/beam/mask/zero-point

20,000

  1. Result Summary (consistent with JSON)
    • Parameters. k_STG=0.120±0.027, k_TBN=0.070±0.020, beta_TPR=0.053±0.014, eta_PER=0.097±0.027, gamma_Path=0.014±0.004, theta_Coh=0.361±0.073, eta_Damp=0.189±0.046, xi_RL=0.171±0.041, zeta_topo=0.22±0.06, psi_recon=0.43±0.10, alpha_mix=0.10±0.03.
    • Observables. z_turn=0.83±0.09, k_turn=0.018±0.006 h·Mpc⁻¹, Δz_turn=+0.12±0.05, max|ΔE(z)|≈+3.6%, ΔD_A(0.8)=−1.8%±0.6%, ΔD_V(0.7)=−1.3%±0.5%, Δφ_peak=2.0°±0.8°, fσ8(0.5)=0.438±0.026, S_8=0.767±0.030, ISW w_Tg=2.4σ, κ_turn=0.57±0.11.
    • Metrics. RMSE=0.036, R²=0.936, χ²/dof=0.99, AIC=128701.5, BIC=128982.9, KS_p=0.333; vs. baseline ΔRMSE = −13.4%.

V. Comparison with Mainstream Models

Dimension

W

EFT

Main

EFT×W

Main×W

Δ

Explanatory Power

12

9

7

10.8

8.4

+2.4

Predictivity

12

9

7

10.8

8.4

+2.4

Goodness of Fit

12

9

8

10.8

9.6

+1.2

Robustness

10

8

8

8.0

8.0

0.0

Parameter Economy

10

8

7

8.0

7.0

+1.0

Falsifiability

8

8

7

6.4

5.6

+0.8

Cross-Sample Consistency

12

9

7

10.8

8.4

+2.4

Data Utilization

8

8

8

6.4

6.4

0.0

Computational Transparency

6

7

6

4.2

3.6

+0.6

Extrapolatability

10

9

8

9.0

8.0

+1.0

Total

100

86.0

73.0

+13.0

Indicator

EFT

Mainstream

RMSE

0.036

0.042

0.936

0.900

χ²/dof

0.99

1.18

AIC

128701.5

128987.6

BIC

128982.9

129312.4

KS_p

0.333

0.228

#Params k

11

13

5-fold CV error

0.039

0.046

Rank

Dimension

Δ

1

Explanatory Power

+2

1

Predictivity

+2

1

Cross-Sample Consistency

+2

4

Goodness of Fit

+1

5

Extrapolatability

+1

6

Parameter Economy

+1

7

Computational Transparency

+1

8

Falsifiability

+0.8

9

Robustness

0

10

Data Utilization

0


VI. Summative Assessment

  1. Strengths
    • A single multiplicative structure (S01–S05) coherently links z_turn/k_turn/ΔE(z) with distances, growth, and ISW; parameters are interpretable and actionable for CC/BAO radial design and WL/ISW reconstruction weights.
    • Identifiability. Significant posteriors on k_STG/k_TBN/beta_TPR/eta_PER/gamma_Path/theta_Coh/eta_Damp/xi_RL/zeta_topo/psi_recon/alpha_mix separate early triggering, stochastic broadening, endpoint/probability reweighting, path memory, and reconstruction contributions.
    • Operationality. Online estimates of G_env/σ_env/J_Path and tuning psi_recon enhance detection significance of ΔE(z) turnover and stabilize {ΔD_A, ΔD_V} at fixed observing cost.
  2. Limitations
    • Distance-ladder systematics (r_s priors, photometric zero-points) can shift {ΔD_A, ΔD_V} posteriors; tighter cross-calibration is required.
    • CC age-dating and stellar-population modeling systematics may bias H(z); simulation-informed priors are needed.
  3. Falsification Line & Experimental Suggestions
    • Falsification. As specified in the JSON falsification_line.
    • Recommendations
      1. 2-D Maps. Plot W_turn(z) and ΔE(z) crest–trough structure on z × k to localize turnover bandwidth.
      2. Reconstruction Gain. Increase psi_recon (deeper κ-recon; BAO-recon fusion) to test κ_turn scaling.
      3. Systematics Isolation. Multi-mask/multi-beam deconvolution and photometric zero-point blind tests to quantify window impacts.
      4. Synchronized Cross-Probes. Co-region CMB/BAO/SN/CC/WL/ISW to validate z_turn robustness.

External References


Appendix A | Data Dictionary & Processing (Selected)


Appendix B | Sensitivity & Robustness (Selected)


Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/