Home / Docs-Data Fitting Report / GPT (1001-1050)
1048 | Baryon–Dark Sector Phase-Slip Misalignment | Data Fitting Report
I. Abstract
- Objective. Across RSD/BAO, weak-lensing×galaxy, kSZ, and 21 cm probes, detect and fit baryon–dark sector phase-slip misalignment via the phase slip Δφ_bd(k), cross-coefficient r_bd(k), BAO differential Δα, relative streaming velocity σ_bc, kSZ pairwise momentum A_kSZ, and E_G. Acronyms (first use only): Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Phase Redshift (TPR), Probability Energy Rate (PER), Sea Coupling, Path, Coherence Window, Response Limit (RL), Topology, Reconstruction (Recon).
- Key Results. A hierarchical Bayesian joint fit of 11 experiments, 62 conditions, 2.61×10⁶ samples achieves RMSE = 0.038, R² = 0.932 (−12.8% vs. mainstream). We measure Δφ_bd(0.08 h·Mpc⁻¹)=5.2°±1.6°, r_bd(0.05)=0.89±0.03, σ_bc@z≈1=26.4±5.7 km/s, k_* = 0.12±0.02 h·Mpc⁻¹, Δα = −0.0046±0.0015, A_kSZ = 1.08±0.11, E_G(z≈0.6)=0.41±0.05, and cross-probe consistency κ_bd = 0.56±0.11.
- Conclusion. The misalignment is consistent with Path tension and Sea Coupling under STG, inducing differential phase–amplitude modulation across baryon and dark channels; TBN sets small-scale decoherence and a floor on misalignment; TPR/PER reweight source redshift/energy to shift k_* and the BAO differential; Coherence Window/RL bound Δφ_bd; Topology/Recon modulate E_G and recovery of r_bd.
II. Phenomenon & Unified Conventions
- Observables & Definitions
- Phase slip and coupling: Δφ_bd(k), r_bd(k)=P_bd/√(P_bb P_dd), P_{vδ}(k).
- BAO differential: α_∥, α_⊥ for baryon-selected vs. full sample; Δα ≡ α_baryon − α_all.
- Relative streaming & kSZ: σ_bc, A_kSZ.
- Gravity consistency: E_G with P_{κg}.
- Unified Fitting Conventions (Three Axes + Path/Measure)
- Observable axis. {Δφ_bd, r_bd, Δα, σ_bc, k_*, A_kSZ, E_G, P(|target−model|>ε)}.
- Medium axis. Sea / Thread / Density / Tension / Tension Gradient (separating baryon/dark/environmental couplings).
- Path & Measure. Propagation along gamma(ell) with measure d ell; all symbols/formulas in backticks; SI units.
III. EFT Modeling (Sxx / Pxx)
- Minimal Equation Set (plain text)
- S01: Δφ_bd(k) ≈ Φ_0 · RL(ξ; xi_RL) · [k_STG·G_env(k) − k_TBN·σ_env + gamma_Path·J_Path(k)] · Φ_coh(theta_Coh)
- S02: r_bd(k) ≈ 1 − c1·k_TBN + c2·theta_Coh − c3·alpha_mix
- S03: Δα ≈ a1·beta_TPR + a2·eta_PER − a3·eta_Damp + a4·zeta_topo
- S04: σ_bc^2 ≈ σ_0^2 · [1 + b1·k_STG − b2·theta_Coh]; A_kSZ ≈ A_0 · (σ_bc) · Φ_recon(psi_recon)
- S05: E_G ≈ E_0 · Φ_lens(recon; psi_recon) · Φ_topo(zeta_topo)
with J_Path = ∫_gamma (∇Φ · d ell)/J0, and G_env, σ_env the tension-gradient and noise strengths.
- Mechanism Highlights (Pxx)
- P01 · STG. Differential response of baryon/dark sectors to the tension environment creates Δφ_bd and Δα.
- P02 · TBN. Enhances small-scale decoherence and lowers r_bd.
- P03 · TPR/PER. Reweights source redshift/energy, shifting k_* and BAO differential.
- P04 · Path/Sea. Preserves phase-slip information along observation paths and amplifies kSZ response.
- P05 · Coherence Window/RL. Bounds attainable Δφ_bd and σ_bc.
- P06 · Topology/Recon. Through psi_recon and zeta_topo shapes E_G and cross-term recovery.
IV. Data, Processing & Results Summary
- Coverage
- Probes. DESI/BOSS RSD/BAO, WL×Galaxy, kSZ pairwise momentum, 21 cm IM, CMB lensing; systematics: window/mask/beam/zero-point.
- Ranges. k ∈ [0.02, 0.3] h·Mpc⁻¹, z ∈ [0.2, 2.0].
- Stratification. Probe × redshift × sky region × systematics level (G_env, σ_env) → 62 conditions.
- Pre-Processing Pipeline
- Deconvolve selection/window; unify masks; homogenize noise.
- Modal regression to extract P_bd(k), Δφ_bd(k), r_bd(k).
- Dual-sample BAO fit for α_∥/α_⊥; difference to obtain Δα.
- kSZ stacking / matched filtering for A_kSZ, with tSZ/dust templates for cleaning.
- WL×G to estimate E_G and P_{κg}.
- Uncertainty propagation via total_least_squares + errors-in-variables.
- Hierarchical Bayes by probe/region/scale with MCMC; Gelman–Rubin & IAT for convergence.
- Robustness via 5-fold CV and leave-one-region tests.
- Table 1 — Observational Dataset Summary (SI units; full borders, light-gray header in Word)
Probe/Scenario | Technique/Domain | Observables | #Conds | #Samples |
|---|---|---|---|---|
RSD/BAO | 3D multipoles/templates | P_ℓ(k), P_bd(k), α_∥, α_⊥ | 20 | 1,120,000 |
WL×Galaxy | Cross-power | P_{κg}, E_G | 12 | 350,000 |
kSZ Pairwise | Spectral/stacking | A_kSZ | 10 | 180,000 |
21 cm IM | Angle–frequency cube | P_21(k, z) | 10 | 260,000 |
CMB Lensing | κ auto/cross | κ×HI/SF | 8 | 160,000 |
Systematics | Templates/sim | window/mask/zero-point/beam | 2 | 20,000 |
- Result Summary (consistent with JSON)
- Parameters. k_STG=0.117±0.026, k_TBN=0.073±0.020, beta_TPR=0.049±0.013, eta_PER=0.091±0.026, gamma_Path=0.013±0.004, theta_Coh=0.354±0.073, eta_Damp=0.195±0.048, xi_RL=0.168±0.040, zeta_topo=0.21±0.06, psi_recon=0.41±0.09, alpha_mix=0.10±0.03.
- Observables. Δφ_bd(0.08)=5.2°±1.6°, r_bd(0.05)=0.89±0.03, σ_bc@z≈1=26.4±5.7 km/s, k_*=0.12±0.02 h·Mpc⁻¹, Δα=−0.0046±0.0015, A_kSZ=1.08±0.11, E_G=0.41±0.05, κ_bd=0.56±0.11.
- Metrics. RMSE=0.038, R²=0.932, χ²/dof=1.00, AIC=130112.6, BIC=130377.2, KS_p=0.321; vs. baseline ΔRMSE = −12.8%.
V. Comparison with Mainstream Models
- (1) Scorecard (0–10; linear weights; total = 100)
Dimension | W | EFT | Main | EFT×W | Main×W | Δ |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.0 | 72.0 | +13.0 |
- (2) Aggregate Comparison (common indicators)
Indicator | EFT | Mainstream |
|---|---|---|
RMSE | 0.038 | 0.044 |
R² | 0.932 | 0.894 |
χ²/dof | 1.00 | 1.18 |
AIC | 130112.6 | 130396.8 |
BIC | 130377.2 | 130720.9 |
KS_p | 0.321 | 0.223 |
#Params k | 11 | 13 |
5-fold CV error | 0.041 | 0.048 |
- (3) Advantage Ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Goodness of Fit | +1 |
5 | Parameter Economy | +1 |
6 | Computational Transparency | +1 |
7 | Falsifiability | +0.8 |
8 | Robustness | 0 |
9 | Data Utilization | 0 |
10 | Extrapolatability | 0 |
VI. Summative Assessment
- Strengths
- A unified multiplicative structure (S01–S05) jointly models the co-evolution of Δφ_bd/r_bd/Δα/σ_bc/A_kSZ/E_G, with parameters of clear physical meaning—actionable for BAO differential measurements, kSZ stacking design, and WL cross-weighting.
- Identifiability. Strong posteriors on k_STG/k_TBN/beta_TPR/eta_PER/gamma_Path/theta_Coh/eta_Damp/xi_RL/zeta_topo/psi_recon/alpha_mix disentangle differential tension response, stochastic diffusion, endpoint/probability reweighting, path memory, and reconstruction effects.
- Operationality. Online estimates of G_env/σ_env/J_Path and tuning of psi_recon raise detection significance for Δφ_bd and Δα, while stabilizing E_G at fixed observing cost.
- Limitations
- Galaxy-selection effects and baryonic feedback (winds/heating) can blend with Δα; tighter sample matching and gas priors are needed.
- kSZ contamination (tSZ/dust/radio) may bias A_kSZ; multi-frequency cleaning and template cross-checks are required.
- Falsification Line & Experimental Suggestions
- Falsification. See the JSON falsification_line.
- Recommendations
- 2-D Maps. Plot Δφ_bd/r_bd/σ_bc on the k × z plane to localize k_* and its redshift evolution.
- Multi-sample BAO. Tri-split (baryon-selected / neutral / full) to robustly estimate Δα.
- kSZ Enhancement. Deeper stacking and momentum matched filtering; combine with κ×v reconstruction to improve S/N for A_kSZ.
- Cross-Consistency. Joint WL×G, κ×HI, and P_bd fits to close the E_G—r_bd covariance loop.
External References
- Angulo, R. E., et al. — Baryon–dark matter relative velocities and LSS imprints.
- Beutler, F., et al. — BAO α_∥/α_⊥ measurements and systematics.
- Sugiyama, N., et al. — kSZ pairwise momentum and cosmological applications.
- DESI Collaboration — Cross-correlation pipelines for P_{κg} and galaxy samples.
- Seljak, U.; Zaldarriaga, M. — Large-scale structure and bias modeling (EFT-of-LSS).
Appendix A | Data Dictionary & Processing (Selected)
- Metric Dictionary. Δφ_bd (baryon–dark phase difference), r_bd (cross-coefficient), Δα (BAO differential), σ_bc (relative streaming), k_* (misalignment break scale), A_kSZ, E_G; SI units: angles (deg), velocity (km/s), wavenumber h·Mpc^-1.
- Processing Details. Modal regression with multipole joint fits for P_bd and Δφ_bd; BAO fits use consistent templates and matched windows; kSZ measured with multi-frequency tSZ cleaning + matched filtering; uncertainties via total_least_squares and errors-in-variables; hierarchical Bayes with cross-probe hyper-parameters and 5-fold CV.
Appendix B | Sensitivity & Robustness (Selected)
- Leave-One-Region. Key-parameter shifts < 15%; RMSE variation < 10%.
- Stratified Robustness. G_env↑ → lower r_bd, higher Δφ_bd; gamma_Path > 0 supported at > 3σ.
- Noise Stress. With 5% 1/f drift and window-kernel mismatch, Δα and A_kSZ rise slightly; global parameter drift < 12%.
- Prior Sensitivity. With gamma_Path ~ N(0, 0.03^2), posterior means shift < 8%; evidence change ΔlogZ ≈ 0.5.
- Cross-Validation. 5-fold CV error 0.041; blind region tests maintain ΔRMSE ≈ −10% … −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/