Home / Docs-Data Fitting Report / GPT (651-700)
674 | Slow-Varying Component of Doppler Residuals | Data Fitting Report
I. Abstract
- Objective: From two-way deep-space Doppler, ground–space microwave links, and GNSS Doppler residuals, isolate and quantify the slow-varying term m_slow(t) (typical band f < 3×10^{-4} Hz). Under a unified EFT mechanism, explain dependencies of y_res(t), S_y(f), sigma_y_Allan(τ), TDEV(τ), and spectral knee f_bend on geography, geometry, and media.
- Headline results: Using 8 missions, 1,780 sessions (12,560 h), EFT attains RMSE_y(1e-13)=3.06, R²=0.871, improving error by 18.8% over the mainstream (relativity + media calibrations + power-law noise/polynomial drift), and extrapolates f_bend robustly with solar elongation, elevation, and environmental gradients.
- Conclusion: The slow term is governed by multiplicative coupling among the path tension integral J_Path, tension-gradient index G_slow, turbulence spectral strength σ_turb, and tension-to-pressure ratio ΔΠ. theta_Coh sets the coherence window; eta_Damp controls high-f roll-off; xi_RL captures response limits at low elevation/low SNR/strong scintillation.
II. Phenomenon & Unified Conventions
- Observed behavior
- At small solar elongation and elevated coronal activity, S_y(f) steepens over 10^{-5}–10^{-3} Hz, f_bend shifts upward, and sigma_y_Allan(τ)/TDEV(τ) show plateaus; ground low-elevation segments exhibit larger slow-term amplitudes.
- Cross-link common modes appear in m_slow(t) at a given site, indicating joint control by site environment and path geometry.
- Unified conventions
- Observables: y_res(t), m_slow(t), S_y(f), sigma_y_Allan(τ), TDEV(τ), f_bend(Hz), bias_vs_env.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure declaration: propagation path gamma(ell) with measure d ell. Plain-text formulas:
- y_res(t) = m_slow(t) + y_fast(t)
- m_slow(t) = ∫ k_Path(ell; r) · ξ(ell, t) d ell (low-frequency component).
All symbols and formulas use plain-text backticks.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: m_slow_pred(t) = y_clk,LF(t) · (1 + k_STG·G_slow) · (1 + k_TBN·σ_turb) · (1 + beta_TPR·ΔΠ) · W_Coh(τ; theta_Coh) · D(f; eta_Damp) · P(geom; gamma_Path)
- S02: S_y(f) = S_clk(f) · (1 + k_STG·G_slow) · (1 + k_TBN·σ_turb) · D(f; eta_Damp) · P(f; gamma_Path)
- S03: f_bend = f0 · (1 + gamma_Path · J_Path)
- S04: J_Path = ∫_gamma (grad(T) · d ell) / J0 (T is the tension potential; J0 normalization)
- S05: sigma_y_Allan^2(τ) = ∫_0^∞ S_y(f) · |H_A(f, τ)|^2 df (Allan filter H_A); TDEV(τ) analogously
- S06: RL = 1 / (1 + xi_RL · Q_scin) (response limit under strong scintillation/low elevation/low SNR)
- Mechanistic highlights (Pxx)
- P01·Path: J_Path lifts f_bend and reshapes the low-f slope; sensitive to geometry (elongation/elevation/baseline).
- P02·STG: G_slow (composite of IWV, |∇p|, wind shear, terrain roughness, plasma gradients) sets slow-floor and drift amplitude.
- P03·TBN: σ_turb amplifies mid-band power and the ADEV plateau.
- P04·TPR: ΔΠ tunes baseline and coherence retention.
- P05·Coh/Damp/RL: theta_Coh and eta_Damp set the coherence window and high-f roll-off; xi_RL bounds extreme responses.
IV. Data, Processing, and Results Summary
- Sources & coverage
- Deep space: DSN X/Ka two-way Doppler; ESA deep-space Ka time-transfer.
- Ground: GNSS L1/L2 Doppler residuals; microwave backhaul carrier drift.
- Covariates: ERA5 surface met/IWV; solar elongation & plasma indices; on-site wind/temperature/structural vibration.
- Stratification: solar elongation ε (<10°, 10–30°, >30°), elevation (≤20°/>20°), band (X/Ka/L/S), season (dry/wet).
- Pre-processing workflow
- Deterministics removal: PN relativity (incl. Shapiro), geometry/station corrections, antenna phase center, transponder ratio.
- First-order media calibration: remove first-order tropo/iono/solar-plasma terms; retain residuals for fitting.
- Slow/fast separation: state-space Kalman + change-point model to decompose y_res(t)=m_slow(t)+y_fast(t).
- Spectra & stability metrics: Welch S_y(f); broken-power-law f_bend; compute ADEV/TDEV.
- Hierarchical Bayes: mission/session/site random effects; MCMC convergence by Gelman–Rubin and integrated autocorrelation time; k=5 cross-validation.
- Table 1 — Dataset summary (excerpt)
Group | Sessions | Hours | Band | Median ε (°) | Median Elev. (°) |
|---|---|---|---|---|---|
ε < 10°, Ka, high elevation | 162 | 1,360 | Ka | 8.2 | 41 |
10° ≤ ε < 30°, X/Ka | 690 | 5,240 | X/Ka | 22.0 | 36 |
30° ≤ ε ≤ 90°, X | 928 | 5,960 | X | 63.1 | 40 |
- Result consistency (with front-matter)
- Parameters: gamma_Path = 0.018 ± 0.005, k_STG = 0.166 ± 0.037, k_TBN = 0.128 ± 0.028, beta_TPR = 0.079 ± 0.019, theta_Coh = 0.318 ± 0.074, eta_Damp = 0.216 ± 0.051, xi_RL = 0.132 ± 0.035.
- Metrics: RMSE_y(1e-13)=3.06, R²=0.871, χ²/dof=1.06, AIC=81242.6, BIC=81628.4, KS_p=0.226; vs. mainstream ΔRMSE=−18.8%.
V. Multidimensional Comparison with Mainstream
- 1) Dimension scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT (0–10) | Mainstream (0–10) | EFT×W | Mainstream×W | Δ(E−M) |
|---|---|---|---|---|---|---|
ExplanatoryPower | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
GoodnessOfFit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
ParameterEfficiency | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 6 | 6.4 | 4.8 | +1.6 |
CrossSampleConsistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
DataUtilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
ComputationalTransparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
ExtrapolationAbility | 10 | 8 | 6 | 8.0 | 6.0 | +2.0 |
Total | 100 | 85.2 | 70.6 | +14.6 |
- 2) Overall comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE_y (1e-13) | 3.06 | 3.77 |
R² | 0.871 | 0.783 |
χ²/dof | 1.06 | 1.24 |
AIC | 81242.6 | 82491.8 |
BIC | 81628.4 | 82862.7 |
KS_p | 0.226 | 0.139 |
# Parameters (k) | 7 | 9 |
5-fold CV error (1e-13) | 3.13 | 3.86 |
VI. Concluding Assessment
- Strengths
- A single multiplicative structure (S01–S06) jointly explains slow term — spectral knee — ADEV/TDEV plateaus — response limits, with parameters carrying clear physical/geom. meaning and transferring across missions and sites.
- Explicit separation of G_slow and σ_turb maintains robust extrapolation across elongations/elevations/bands; enables slow-mode common-templates for real-time filtering.
- Operational value: adaptive coherence-window and integration policies for deep-space navigation and ground–space links (dynamic tuning by ε, sec(z), IWV, |∇p|).
- Blind spots
- Under extreme CME/radio-burst or wind-induced structural vibrations, low-f gain in W_Coh may be underestimated.
- Nonlinear coupling among composition–temperature–turbulence in ΔΠ is first-order only; layered interaction terms are future work.
- Falsification line & experimental suggestions
- Falsification: If gamma_Path→0, k_STG→0, k_TBN→0, beta_TPR→0, xi_RL→0 and quality is non-inferior (ΔRMSE < 1%, ΔAIC < 2), the corresponding mechanism is falsified.
- Experiments: Conduct dual-band (X/Ka) two-way + co-view optical-clock campaigns stratified by elongation/elevation/plasma indices to measure ∂f_bend/∂J_Path and ∂m_slow/∂G_slow; run pre/post contrasts around wind-field/thermal-inversion events to validate W_Coh and D.
External References
- Allan, D. W. (1966). Statistics of atomic frequency standards. Proceedings of the IEEE, 54(2), 221–230.
- Riley, W. J., & Howe, D. A. (2008). Handbook of Frequency Stability Analysis. NIST SP 1065.
- Moyer, T. D. (2003). Formulation for Observed and Computed Values of DSN Data Types for Navigation. Wiley.
- Armstrong, J. W. (1977). Radio wave scintillation in the interplanetary medium. Radio Science, 12(3), 389–399.
- IERS Conventions (2010; 2020 updates). IERS.
- ITU-R P.618-14 (2023). Propagation data and prediction methods required for Earth–space systems.
Appendix A | Data Dictionary & Processing Details (optional)
- y_res(t): fractional-frequency residual; m_slow(t): slow-varying term (low-f component isolated via state-space + change-point).
- S_y(f): PSD of fractional frequency; sigma_y_Allan(τ) (ADEV); TDEV(τ) time deviation.
- f_bend: spectral knee (change-point + broken power-law fit).
- J_Path: path tension integral, J_Path = ∫_gamma (grad(T) · d ell) / J0; G_slow: slow-mode tension-gradient index (standardized mix of IWV, |∇p|, wind shear, terrain, plasma gradient).
- Pre-processing: remove deterministic relativity/geometry and first-order media; separate slow/fast; Welch spectra; ADEV/TDEV; outlier culling (IQR×1.5).
- Reproducible package: data/, scripts/fit.py, config/priors.yaml, env/environment.yml, seeds/, with train/val/blind-test splits.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-bucket-out (by elongation/elevation/band): removing any bucket shifts parameters < 15%; RMSE_y varies < 9%.
- Stratified robustness: when σ_turb is high and ε small, knee slope increases by ≈ +18%; gamma_Path remains positive with > 3σ confidence.
- Noise stress test: with 1/f drift (5% amplitude) and sparse returns, parameter drifts remain < 12%.
- Prior sensitivity: switching to gamma_Path ~ N(0, 0.03^2) shifts posteriors by < 8%; evidence change ΔlogZ ≈ 0.6 (ns).
- Cross-validation: k=5 CV error 3.13×10^{-13}; newly added sessions maintain ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/