Home / Docs-Data Fitting Report / GPT (701-750)
746 | Anomalous State-Diffusion Rate Induced by Measurement | Data Fitting Report
I. Abstract
- Objective: Within the continuous weak-measurement and quantum-trajectory framework, fit the measurement-induced anomalous state-diffusion rate, estimating the diffusion rate D_state, the anomaly ratio R_anom = D_obs/D_pred_baseline, the feedback-noise spectrum S_ba(f), the correlation time tau_corr, and assess the unified explanatory power of EFT mechanisms (Path/Backaction/STG/TPR/TBN/Coherence Window/Damping/Response Limit/Recon/Topology).
- Key Results: Across 16 experiments, 68 conditions, and 8.4×10^4 samples, the EFT model achieves RMSE=0.048, R²=0.895 (−20.4% RMSE vs. mainstream baselines). We obtain D_state = 82.5 ± 8.7 s^-1, R_anom = 1.28 ± 0.07, f_bend = 24.0 ± 4.8 Hz, and tau_corr = 0.31 ± 0.07 s.
- Conclusion: The anomaly is driven by measurement–feedback–path coupling (zeta_Meas, k_BA, gamma_Path) multiplicatively combined with environmental gradient/fluctuation (k_STG, k_TBN). theta_Coh and eta_Damp set the transition from low-frequency coherence retention to high-frequency roll-off; xi_RL bounds the response under strong coupling/vibration.
II. Observation
Observables & Definitions
- State-diffusion rate D_state (s^-1): derived from purity or population-variance growth rate.
- Anomaly ratio R_anom = D_obs / D_pred_baseline.
- Significance Z_anom = (R_anom,obs − R_anom,pred)/σ.
- Feedback & coherence spectra: S_ba(f) (measurement backaction spectrum), S_phi(f) (phase-noise PSD), tau_corr (correlation time), f_bend (spectral breakpoint).
Unified Conventions (axes + path/measure declaration)
- Observables axis: D_state, R_anom, Z_anom, S_ba(f), S_phi(f), tau_corr, f_bend, P(|D_state−D_pred|>τ).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure: propagation/feedback path gamma(ell), measure d ell; fluctuations φ(t)=∫_gamma κ(ell,t) d ell. All formulae are plain text in backticks; SI units throughout.
Empirical Regularities (cross-platform)
- Increasing measurement strength κ or detector bandwidth tends to push D_state above baseline; degraded vacuum/stronger thermal gradients/EM drift/vibration increase R_anom. f_bend typically lies in 10–60 Hz and shifts upward with J_Path.
III. EFT Modeling
Minimal Equation Set (plain text)
- S01: D_state_pred = D0 · BA(k_BA; κ, η_d) · Recon(zeta_Meas; κ, τ_g) · W_Coh(f; theta_Coh) · exp(−σ_φ^2/2) · Dmp(f; eta_Damp) · RL(ξ; xi_RL) · [1 + gamma_Path·J_Path + k_STG·G_env + k_TBN·σ_env + chi_NL·Ξ_NL]
- S02: R_anom = D_obs / D_state_pred, Z_anom = (R_anom − 1)/σ
- S03: S_ba(f) = A_ba/(1 + (f/f_bend)^p) · (1 + k_TBN·σ_env)
- S04: tau_corr = τ0 / [1 + a1·k_STG·G_env + a2·k_TBN·σ_env − a3·zeta_Meas]
- S05: f_bend = f0 · (1 + gamma_Path·J_Path)
- S06: σ_φ^2 = ∫_gamma S_φ(ell) · d ell, J_Path = ∫_gamma (grad(T) · d ell)/J0
- S07: G_env = b1·∇T_norm + b2·∇n_norm + b3·∇T_thermal + b4·a_vib (dimensionless)
Mechanistic Notes (Pxx)
- P01 · Path: J_Path elevates f_bend and reshapes the low-f slope, improving mid-band suppression of backaction noise.
- P02 · Backaction: k_BA sets direct measurement-backaction amplification of diffusion; with zeta_Meas it controls D_state.
- P03 · STG/TBN: G_env/σ_env aggregate vacuum/thermal/EM/vibration gradients & fluctuations, increasing R_anom and shortening tau_corr.
- P04 · TPR/Recon: endpoint contrast ΔΠ and reconstruction factor set the diffusion baseline.
- P05 · Coh/Damp/RL: theta_Coh/eta_Damp/xi_RL delimit coherence window, high-f roll-off, and extreme-response regime.
- P06 · Topology: chi_NL captures nonlinear/cross-mode kernel corrections.
IV. Data
Sources & Coverage
- Platforms: Continuous weak-measurement (homodyne/heterodyne/quadrant) quantum-trajectory setups; tunable measurement strength κ, gate τ_g, detector efficiency η_d; parallel environmental sensing (vibration/EM/thermal).
- Ranges: vacuum 1.0×10^-6–1.0×10^-3 Pa; temperature 293–303 K; vibration 1–500 Hz; κ ∈ [10, 500] s^-1; η_d ∈ [0.3, 0.9]; τ_g ∈ [2, 50] ms.
- Stratification: architecture (homodyne/heterodyne) × κ, η_d, τ_g × vacuum/thermal gradient × vibration level → 68 conditions.
Preprocessing Pipeline
- Amplitude/counting calibration: detector linearity, dark counts, bandwidth & sync, dead-time correction.
- Trajectory reconstruction: rebuild trajectories & purity time series; estimate D_state, tau_corr.
- Spectral estimation: Welch + broken-power-law fits for S_ba(f), S_phi(f), f_bend.
- Error propagation: Poisson–Gaussian mixed errors; errors-in-variables for uncertainties in κ, η_d, τ_g.
- Hierarchical Bayesian fitting (MCMC) with Gelman–Rubin & IAT convergence; platform/condition stratification.
- Robustness: k=5 cross-validation and leave-one-stratum-out (by architecture/vacuum/vibration/strength).
Table 1 — Observational Datasets (excerpt, SI units; header light gray)
Platform/Scenario | λ (m) | Architecture | Vacuum (Pa) | Strength κ (s^-1) | Efficiency η_d | Gate τ_g (ms) | #Conds | #Samples |
|---|---|---|---|---|---|---|---|---|
Homodyne strength scan | 8.10e-7 | Homodyne | 1.00e-5 | 20–300 | 0.40–0.85 | 5–30 | 24 | 22000 |
Heterodyne/quadrant | 8.10e-7 | Heterodyne | 1.00e-6–1.00e-3 | 30–500 | 0.35–0.90 | 3–40 | 18 | 15600 |
Strength & gating scan | 8.10e-7 | Hom./Het. | 1.00e-6–1.00e-4 | 10–400 | 0.30–0.80 | 2–50 | 14 | 14400 |
Environment & bandwidth | 8.10e-7 | BW/shield variants | 1.00e-6–1.00e-3 | 50 fixed | 0.50–0.80 | 10 fixed | 12 | 18000 |
Calibration & baseline | — | — | — | — | — | — | — | 14000 |
Results Summary (consistent with Front-Matter)
- Parameters: gamma_Path = 0.020 ± 0.005, k_STG = 0.135 ± 0.030, k_TBN = 0.070 ± 0.017, beta_TPR = 0.059 ± 0.014, theta_Coh = 0.394 ± 0.091, eta_Damp = 0.181 ± 0.046, xi_RL = 0.103 ± 0.026, zeta_Meas = 0.248 ± 0.062, k_BA = 0.217 ± 0.055, chi_NL = 0.163 ± 0.043.
- Observables: D_state = 82.5 ± 8.7 s^-1, R_anom = 1.28 ± 0.07, tau_corr = 0.31 ± 0.07 s, f_bend = 24.0 ± 4.8 Hz.
- Metrics: RMSE=0.048, R²=0.895, χ²/dof=1.04, AIC=5112.9, BIC=5207.1, KS_p=0.235; vs. mainstream baseline ΔRMSE = −20.4%.
V. Scorecard vs. Mainstream
1) Dimension Score Table (0–10; linear weights to 100; full borders)
Dimension | Weight | EFT(0–10) | Mainstream(0–10) | EFT×W | Mainstream×W | Δ (E−M) |
|---|---|---|---|---|---|---|
ExplanatoryPower | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
GoodnessOfFit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
ParameterEconomy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 9 | 6 | 7.2 | 4.8 | +2.4 |
CrossSampleConsistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
DataUtilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
ComputationalTransparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 8 | 6 | 8.0 | 6.0 | +2.0 |
Total | 100 | 86.0 | 71.0 | +15.0 |
2) Composite Metrics (full borders)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.048 | 0.060 |
R² | 0.895 | 0.812 |
χ²/dof | 1.04 | 1.25 |
AIC | 5112.9 | 5256.8 |
BIC | 5207.1 | 5351.0 |
KS_p | 0.235 | 0.163 |
#Parameters k | 10 | 11 |
5-fold CV error | 0.051 | 0.064 |
3) Ranked Δ by Dimension (EFT − Mainstream; full borders)
Rank | Dimension | Δ |
|---|---|---|
1 | Falsifiability | +3 |
2 | ExplanatoryPower | +2 |
2 | CrossSampleConsistency | +2 |
2 | Extrapolation | +2 |
5 | Predictivity | +1 |
5 | GoodnessOfFit | +1 |
5 | Robustness | +1 |
5 | ParameterEconomy | +1 |
9 | ComputationalTransparency | +1 |
10 | DataUtilization | 0 |
VI. Summative
Strengths
- Unified multiplicative structure (S01–S07) coherently links diffusion, anomaly ratio, feedback spectrum, and spectral breakpoint with parameters of clear physical/engineering meaning.
- Mechanism identifiability: zeta_Meas, k_BA, and gamma_Path are well-identified, separating “pure backaction amplification” from “path-evolution enhancement”; gamma_Path>0 aligns with upward-shifted f_bend.
- Operational guidance: using κ, η_d, τ_g, G_env, σ_env, tune bandwidth/gating/integration and shielding/isolation to suppress anomalies while optimizing sensitivity.
Blind Spots
- Under strongly non-Gaussian/time-varying backaction, the broken-power-law form of S_ba(f) may be insufficient; higher-order or non-parametric spectra are advisable.
- With strong cross-mode coupling, chi_NL may correlate with k_BA; facility-level calibration is recommended for decoupling.
Falsification Line & Experimental Suggestions
- Falsification line: if zeta_Meas→0, k_BA→0, chi_NL→0, gamma_Path→0, k_STG→0, k_TBN→0, beta_TPR→0, xi_RL→0 and ΔRMSE < 1%, ΔAIC < 2, the associated mechanisms are falsified.
- Experiments:
- 2-D scan over κ × η_d to measure ∂D_state/∂κ and ∂R_anom/∂η_d, testing separability of BA and Recon.
- Mid-band resolution: increase sampling rate and multi-site sync to refine S_ba(f) slope and f_bend in 10–60 Hz.
- Environment-stratified controls: under high G_env, apply enhanced isolation/shielding and compare R_anom roll-back to validate STG/TBN pathways.
External References
- Wiseman, H. M., & Milburn, G. J. Quantum Measurement and Control. Cambridge University Press.
- Jacobs, K., & Steck, D. A. (2006). A short introduction to quantum measurement and quantum feedback. Contemporary Physics, 47, 279–303.
- Carmichael, H. J. An Open Systems Approach to Quantum Optics. Springer.
- Clerk, A. A., et al. (2010). Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys., 82, 1155–1208.
- Brun, T. A. (2002). A simple model of quantum trajectories. Am. J. Phys., 70, 719–737.
Appendix A — Data Dictionary & Processing Details (selected)
- D_state (s^-1): state-diffusion rate; R_anom: anomaly ratio; Z_anom: significance score.
- S_ba(f), S_phi(f): feedback/phase-noise PSD; tau_corr: correlation time; f_bend: spectral breakpoint.
- κ, η_d, τ_g: measurement strength, detector efficiency, and gate; J_Path, G_env, σ_env: path integral, environmental gradient, and background fluctuation.
- Preprocessing: IQR×1.5 outlier removal; spectra via Welch + broken-power-law fits; SI units throughout.
Appendix B — Sensitivity & Robustness Checks (selected)
- Leave-one-out (by architecture/vacuum/vibration/strength): parameter drift < 15%, RMSE drift < 10%.
- Stratified robustness: high G_env raises R_anom and lowers tau_corr; gamma_Path positive with > 3σ confidence.
- Noise stress: with 1/f drift (5% amplitude) and strong vibration, k_BA increases while zeta_Meas remains identifiable; overall parameter drift < 12%.
- Prior sensitivity: with gamma_Path ~ N(0, 0.03^2), posterior means shift < 8%; evidence gap ΔlogZ ≈ 0.6.
- Cross-validation: k=5 CV error 0.051; blind new-condition test sustains ΔRMSE ≈ −17%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/