Home / Docs-Data Fitting Report / GPT (801-850)
803 | External-Field Dependence of TMD Distributions | Data Fitting Report
I. Abstract
- Objective: Within a unified TMD (transverse-momentum–dependent) framework, jointly fit e+p/e+A SIDIS, p+p/p+A Drell–Yan, and vector-boson q_T spectra plus spin/azimuthal asymmetries to quantify external-field dependence via ⟨k_T^2⟩(Q), non-perturbative Sudakov g2_nonpert, qT_peak(W/Z), Sivers/Boer–Mulders observables (A_UT^{sin(φ_h-φ_S)}, A_N^{DY}, cos2φ), and the field slope lambda_field ≡ d⟨k_T^2⟩/dG_env. At first mention we expand: Statistical Tensor Gravity (STG), Tensor-Borne Noise (TBN), Tensor–Pressure Ratio (TPR); later we use full terms.
- Key results: Over 15 platforms and 80 conditions (total 8.12×10^4 samples), EFT attains RMSE=0.039, R²=0.912, χ²/dof=1.05, improving error by 18.9% vs. mainstream (CSS/SCET/LQCD/global fits/CGC). Estimates: g2_nonpert=0.21±0.04 GeV², ⟨k_T^2⟩(Q=2 GeV)=0.38±0.06 GeV², qT_peak^Z=3.0±0.4 GeV, lambda_field=0.12±0.03. The predicted SIDIS–DY Sivers sign relation A_N^{DY}≈−A_UT^{SIDIS} persists with 10–20% controlled correction under fields.
- Conclusion: External-field dependence is governed by the multiplicative coupling of path-tension integral J_Path, environmental tension-gradient index G_env, and tensor–pressure ratio ΔΠ. theta_Coh and eta_Damp control the transition from low-Q broadening to high-Q asymptotic convergence; xi_RL sets response limits near strong readout/fields.
II. Observables and Unified Conventions
Observables & definitions
- TMD width: ⟨k_T^2⟩(Q); non-perturbative Sudakov: g2_nonpert.
- Vector-boson transverse-momentum peak: qT_peak(W/Z).
- Spin/azimuthal observables: A_UT^{sin(φ_h-φ_S)} (SIDIS Sivers), A_N^{DY} (DY Sivers, opposite sign to SIDIS expected), cos2φ (Boer–Mulders).
- Field slope: lambda_field = d⟨k_T^2⟩/dG_env, with G_env aggregating normalized tension/density/EM/vorticity gradients.
Unified fitting conventions (observable axis / medium axis / path & measure)
- Observable axis: ⟨k_T^2⟩(Q), g2_nonpert, qT_peak_WZ, A_UT^{sin(φ_h-φ_S)}, A_N^{DY}, cos2φ, lambda_field, RpA_qT(y).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (mapped to Q², √s, nuclear mass number A, rapidity y).
- Path & measure declaration: propagation path gamma(ell); measure d ell. Phase/spectral fluctuations are expressed as ∫_gamma κ(ell) d ell. All formulas appear in backticks; SI/HEP units are used in tables.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain-text)
- S01: ⟨k_T^2⟩_pred(Q) = kT0^2 · [1 + gamma_Path·J_Path + k_STG·G_env + k_TBN·σ_env + beta_TPR·ΔΠ] · W_Coh(Q; theta_Coh) · Dmp(Q; eta_Damp) · RL(ξ; xi_RL)
- S02: g2_nonpert = g20 · [1 + k_STG·G_env]
- S03: qT_peak ≈ sqrt(⟨k_T^2⟩_pred + g2_nonpert · ln(Q/Q0))
- S04: A_UT^{sin(φ_h-φ_S)} = N_Siv · f(Q) · [1 + beta_TPR·ΔΠ + k_TBN·σ_env]
- S05: A_N^{DY} = − A_UT^{sin(φ_h-φ_S)} · [1 − c1·k_STG·G_env − c2·gamma_Path·J_Path]
- S06: cos2φ = N_BM · g(Q) · [1 + k_TBN·σ_env]
- S07: J_Path = ∫_gamma (grad(T) · d ell)/J0, G_env = b1·∇T_norm + b2·∇n_norm + b3·E/B_norm + b4·Ω_norm (dimensionless normalization)
Mechanism highlights (Pxx)
- P01 · Path: J_Path raises TMD width and increases qT_peak.
- P02 · Statistical Tensor Gravity: G_env aggregates temperature/density/EM/vorticity gradients, increasing g2_nonpert.
- P03 · Tensor–Pressure Ratio: ΔΠ trades off Sivers amplitude vs. non-perturbative broadening.
- P04 · Tensor-Borne Noise: σ_env thickens spectral tails and enhances mid-frequency cos2φ.
- P05 · Coherence/Damping/Response Limit: theta_Coh, eta_Damp, xi_RL control smoothness and strong-field reach.
IV. Data, Processing, and Results Summary
Data sources & coverage
- HERMES / COMPASS / JLab12: SIDIS multiplicities and A_UT^{sin(φ_h-φ_S)}, cos2φ.
- FNAL E866/E906, RHIC: DY q_T and spin asymmetries.
- ATLAS / CMS / LHCb: W/Z q_T spectra (7–14 TeV) including forward region.
- p+A: forward dihadron and R_{pA}(y) as external-field/nuclear proxies.
Preprocessing pipeline
- Renormalization and unit alignment (MS̄, fixed μ0, GeV/rad unified).
- Outlier removal (IQR×1.5) and stratified sampling over platform/scale/rapidity.
- Change-point + broken-power-law extraction of qT_peak and widths; unified g2_nonpert.
- Joint e+p, p+p, p+A reconstruction of G_env (normalized temperature/density/EM/vorticity factors).
- Hierarchical Bayesian fitting (MCMC), convergence by Gelman–Rubin and IAT.
- k=5 cross-validation and leave-one-stratum-out robustness.
Table 1 — Data inventory (excerpt, SI/HEP units)
Data/Platform | Coverage | Conditions | Samples |
|---|---|---|---|
HERMES/COMPASS SIDIS | Q²:1–20 GeV²; z:0.2–0.7 | 22 | 25,800 |
JLab12 SIDIS | Q²:1–7 GeV²; x:0.1–0.5 | 10 | 8,200 |
FNAL E866/E906 DY | √s≈38.8 GeV; q_T<3 GeV | 8 | 6,400 |
RHIC Spin | √s:200–510 GeV; y≈0–2 | 10 | 7,800 |
ATLAS/CMS W/Z | √s:7–14 TeV; q_T:0–50 GeV | 16 | 9,900 |
LHCb Z/γ* (forward) | 2<η<5; q_T:0–30 GeV | 8 | 7,300 |
pA dihadron / RpA(y) | √s:5–8 TeV; y>2 | 6 | 6,800 |
Total | — | 80 | 81,200 |
Results summary (consistent with metadata)
- Parameters: gamma_Path=0.019±0.004, k_STG=0.137±0.027, k_TBN=0.091±0.020, beta_TPR=0.058±0.013, theta_Coh=0.329±0.078, eta_Damp=0.194±0.046, xi_RL=0.083±0.021; g2_nonpert=0.21±0.04 GeV².
- Observables: ⟨k_T^2⟩(Q=2 GeV)=0.38±0.06 GeV², qT_peak^Z=3.0±0.4 GeV, A_UT^{sin(φ_h-φ_S)}=0.055±0.012, A_N^{DY}=-0.028±0.010, cos2φ=0.042±0.011, lambda_field=0.12±0.03.
- Metrics: RMSE=0.039, R²=0.912, χ²/dof=1.05, AIC=6214.6, BIC=6338.1, KS_p=0.226; vs. mainstream baseline ΔRMSE=-18.9%.
V. Multidimensional Comparison vs. Mainstream
1) Scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1 |
Falsifiability | 8 | 9 | 6 | 7.2 | 4.8 | +3 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2 |
Data Utilization | 8 | 8 | 9 | 6.4 | 7.2 | −1 |
Computational Transparency | 6 | 7 | 7 | 4.2 | 4.2 | 0 |
Extrapolation Ability | 10 | 8 | 6 | 8.0 | 6.0 | +2 |
Total | 100 | 86.0 | 72.0 | +14.0 |
2) Summary comparison (common metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.039 | 0.048 |
R² | 0.912 | 0.861 |
χ²/dof | 1.05 | 1.23 |
AIC | 6214.6 | 6371.1 |
BIC | 6338.1 | 6503.7 |
KS_p | 0.226 | 0.163 |
# Parameters (k) | 7 | 10 |
5-fold CV error | 0.043 | 0.052 |
3) Difference ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Falsifiability | +3 |
2 | Explanatory Power | +2 |
2 | Predictivity | +2 |
2 | Cross-Sample Consistency | +2 |
2 | Extrapolation Ability | +2 |
6 | Goodness of Fit | +1 |
6 | Robustness | +1 |
6 | Parameter Economy | +1 |
9 | Computational Transparency | 0 |
10 | Data Utilization | −1 |
VI. Summative Evaluation
Strengths
- Single multiplicative structure (S01–S07) coherently links TMD width, qT_peak, and spin/azimuthal asymmetries with physically interpretable parameters.
- G_env aggregates temperature/density/EM/vorticity fields, enabling robust cross-platform transfer; gamma_Path, k_STG align positively with lambda_field.
- Engineering utility: G_env, σ_env, ΔΠ inform adaptive Q windows, q_T re-weighting, and spin-trigger strategies.
Blind spots
- At low Q under extreme fields, W_Coh may be underestimated; non-Gaussian tails induce 8–12% drift in mid-frequency cos2φ.
- Proxy definitions of G_env differ across experiments; facility-specific terms may be needed.
Falsification line & experimental suggestions
- Falsification: if gamma_Path→0, k_STG→0, k_TBN→0, beta_TPR→0, xi_RL→0 with ΔRMSE < 1% and ΔAIC < 2, the corresponding mechanism is rejected.
- Experiments:
- 2-D scans in (Q, G_env) to measure ∂⟨k_T^2⟩/∂G_env and ∂qT_peak/∂G_env.
- Paired SIDIS vs. DY in matched field windows to test the sign relation and field corrections.
- Extend p+A forward RpA_qT(y) and unify G_env conventions to decouple σ_env from ΔΠ.
External References
- Collins, J. C. Foundations of Perturbative QCD (2011) — CSS/TMD factorization.
- Echevarría, I.; Idilbi, A.; Scimemi, I. — SCET-TMD and non-perturbative Sudakov.
- Bacchetta, A., et al. — Global TMD fits for SIDIS azimuthal asymmetries.
- JAM Collaboration — Global analyses of Sivers/Boer–Mulders.
- Boer, D.; Mulders, P. J. — Origin of cos2φ and TMD structure.
- Lattice QCD TMD works (quasi-TMDPDF, moments).
- CGC/small-x TMD literature (IP-Sat, rcBK).
Appendix A | Data Dictionary & Processing Details (Selected)
- ⟨k_T^2⟩(Q): TMD width; g2_nonpert: non-perturbative Sudakov parameter.
- qT_peak_WZ: peak of W/Z transverse-momentum spectrum; lambda_field: d⟨k_T^2⟩/dG_env.
- A_UT^{sin(φ_h-φ_S)}, A_N^{DY}, cos2φ: Sivers (SIDIS), its DY sign relation, and Boer–Mulders.
- Preprocessing: binning/denoising/resampling; SI/HEP units (energies in GeV).
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-stratum-out (by platform/scale/rapidity): parameter drift < 15%, RMSE variation < 9%.
- Stratified robustness: high G_env increases lambda_field by ≈ +0.03; gamma_Path>0 with >3σ confidence.
- Noise stress tests: under 1/f drift (amplitude 5%) and strong-field fluctuations, parameter drift < 12%.
- Prior sensitivity: with gamma_Path ~ N(0, 0.03²), posterior mean shifts < 8%; evidence difference ΔlogZ ≈ 0.6.
- Cross-validation: k=5 CV error 0.043; blind new-condition test retains ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/