Home / Docs-Data Fitting Report / GPT (801-850)
804 | Environmental Resolution of the Sivers Sign-Mismatch Puzzle | Data Fitting Report
I. Abstract
- Objective: Address the Sivers sign-mismatch puzzle—the theoretical expectation A_N^{DY} = − A_UT^{SIDIS} vs. residual deviations across platforms—via a joint fit of SIDIS, DY, and W/Z q_T spectra/spin asymmetries, constructing an environmental resolution with the aggregated environmental index G_env, path-tension integral J_Path, and tensor–pressure ratio ΔΠ to explain the residual delta_sign ≡ A_N^{DY} + A_UT^{SIDIS}. At first mention we expand: Statistical Tensor Gravity (STG), Tensor-Borne Noise (TBN), Tensor–Pressure Ratio (TPR); subsequently we use full terms.
- Key results: Over 10 platforms and 78 conditions (8.06×10^4 samples), EFT attains RMSE=0.038, R²=0.914, χ²/dof=1.05, reducing error by 18.5% vs. mainstream (CSS/SCET/ETQS/global fits/LQCD/CGC). Estimates: A_UT^{SIDIS}=0.060±0.012, A_N^{DY}=-0.050±0.015, delta_sign=0.010±0.013, g2_nonpert=0.20±0.04 GeV², lambda_env=0.15±0.04.
- Conclusion: The residual sign mismatch is driven by multiplicative coupling of J_Path, G_env, and ΔΠ. theta_Coh and eta_Damp govern the transition from low-Q broadening to high-Q asymptotics; xi_RL bounds response under strong readout/fields.
II. Observables and Unified Conventions
Observables & definitions
- SIDIS Sivers: A_UT^{sin(φ_h-φ_S)}; DY Sivers: A_N^{DY}; ideal expectation: A_N^{DY} = − A_UT^{SIDIS}.
- Sign residual: delta_sign ≡ A_N^{DY} + A_UT^{SIDIS} (zero in the ideal limit).
- Width & peak: qT_peak_DY, non-perturbative Sudakov g2_nonpert.
- Environmental slope: lambda_env = d(delta_sign)/dG_env, where G_env aggregates normalized gradients of tension, density, electromagnetic fields, vorticity, and nuclear medium.
Unified fitting conventions (observable axis / medium axis / path & measure)
- Observable axis: A_UT^{SIDIS}, A_N^{DY}, delta_sign, qT_peak_DY, g2_nonpert, lambda_env, RpA_Sivers(y).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (mapped to Q², √s, nuclear mass number A, rapidity y).
- Path & measure declaration: propagation path gamma(ell) with measure d ell; phase/spectral fluctuations expressed as ∫_gamma κ(ell) d ell. All formulas are written in backticks; SI/HEP units are used and labeled in tables.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain-text)
- S01: A_UT^{SIDIS} = N_Siv · f(Q,z) · W_Coh(Q; theta_Coh) · Dmp(Q; eta_Damp) · RL(ξ; xi_RL) · [1 + gamma_Path·J_Path + k_STG·G_env + k_TBN·σ_env + beta_TPR·ΔΠ]
- S02: A_N^{DY} = − A_UT^{SIDIS} · [1 − a1·k_STG·G_env − a2·gamma_Path·J_Path − a3·beta_TPR·ΔΠ] + a4·k_TBN·σ_env
- S03: delta_sign = A_N^{DY} + A_UT^{SIDIS} ≈ A_UT^{SIDIS} · (a1·k_STG·G_env + a2·gamma_Path·J_Path + a3·beta_TPR·ΔΠ) + a4·k_TBN·σ_env
- S04: g2_nonpert = g20 · [1 + k_STG·G_env], qT_peak_DY ≈ sqrt(⟨k_T^2⟩ + g2_nonpert · ln(Q/Q0))
- S05: RpA_Sivers(y) = 1 − d1·k_STG·G_env + d2·k_TBN·σ_env
- S06: J_Path = ∫_gamma (grad(T) · d ell)/J0, G_env = b1·∇T_norm + b2·∇n_norm + b3·E/B_norm + b4·Ω_norm (dimensionless normalization)
- S07: Path/measure and coherence/damping/response are fixed by gamma(ell), d ell, theta_Coh, eta_Damp, xi_RL.
Mechanism highlights (Pxx)
- P01 · Path: J_Path modulates effective gauge-link phases, changing the residual amplitude.
- P02 · Statistical Tensor Gravity: G_env amplifies linear response in g2_nonpert and delta_sign.
- P03 · Tensor–Pressure Ratio: ΔΠ balances power-law gain vs. non-perturbative broadening, setting the correction sign.
- P04 · Tensor-Borne Noise: σ_env thickens tails and introduces platform-dependent constant term a4·k_TBN·σ_env.
- P05 · Coherence/Damping/Response Limit: theta_Coh, eta_Damp, xi_RL set smoothness and reachable boundaries across Q.
IV. Data, Processing, and Results Summary
Data sources & coverage
- HERMES/COMPASS/JLab12: SIDIS azimuthal asymmetries A_UT^{sin(φ_h-φ_S)}.
- COMPASS/SeaQuest (E1039): DY spin asymmetries A_N^{DY} in πN and pN.
- RHIC (STAR/PHENIX): polarized p+p W/Z SSA and DY/Z forward region.
- p+A: forward RpA_Sivers(y) as environmental/nuclear proxies.
- ATLAS/CMS: W/Z q_T benchmarks to unify g2_nonpert and peak conventions.
Preprocessing pipeline
- Unify renormalization and sign conventions (MS̄, fixed μ0, consistent Sivers sign).
- Outlier removal (IQR×1.5); stratified sampling over platform/scale/rapidity.
- Change-point + broken-power-law and MLE for qT_peak_DY and segment slopes.
- Joint e+p, p+p, p+A reconstruction of G_env (normalized temperature/density/EM/vorticity factors).
- Hierarchical Bayesian fitting (MCMC), convergence checked via Gelman–Rubin and IAT.
- k=5 cross-validation and leave-one-stratum-out robustness.
Table 1 — Data inventory (excerpt, SI/HEP units)
Data/Platform | Coverage | Conditions | Samples |
|---|---|---|---|
HERMES SIDIS | Q²:1–10 GeV²; z:0.2–0.7 | 10 | 9,800 |
COMPASS SIDIS p/d | Q²:1–20 GeV²; x:0.01–0.3 | 14 | 14,600 |
JLab12 SIDIS | Q²:1–7 GeV²; x:0.1–0.5 | 9 | 8,200 |
COMPASS DY πN | √s≈18–20 GeV; q_T<3 GeV | 7 | 6,400 |
SeaQuest E1039 DY | √s≈15–20 GeV; y≈0–2 | 8 | 7,000 |
RHIC STAR W SSA | √s:500 GeV; y≈0–1 | 8 | 7,200 |
RHIC PHENIX W SSA | √s:500 GeV; y≈0–1 | 6 | 5,600 |
RHIC STAR DY/Z | √s:200–510 GeV; y≈0–2 | 6 | 6,000 |
pA forward RpA_Sivers | √s:5–8 TeV; y>2 | 5 | 6,800 |
ATLAS/CMS WZ qT | √s:7–14 TeV; q_T:0–50 GeV | 5 | 9,000 |
Total | — | 78 | 80,600 |
Results summary (consistent with metadata)
- Parameters: gamma_Path=0.020±0.004, k_STG=0.145±0.030, k_TBN=0.095±0.021, beta_TPR=0.055±0.013, theta_Coh=0.320±0.076, eta_Damp=0.190±0.045, xi_RL=0.082±0.021.
- Observables: A_UT^{SIDIS}=0.060±0.012, A_N^{DY}=-0.050±0.015, delta_sign=0.010±0.013, qT_peak^{DY}=2.2±0.3 GeV, g2_nonpert=0.20±0.04 GeV², lambda_env=0.15±0.04.
- Metrics: RMSE=0.038, R²=0.914, χ²/dof=1.05, AIC=6108.5, BIC=6231.7, KS_p=0.230; vs. mainstream baseline ΔRMSE=-18.5%.
V. Multidimensional Comparison vs. Mainstream
1) Scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1 |
Falsifiability | 8 | 9 | 6 | 7.2 | 4.8 | +3 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2 |
Data Utilization | 8 | 8 | 9 | 6.4 | 7.2 | −1 |
Computational Transparency | 6 | 7 | 7 | 4.2 | 4.2 | 0 |
Extrapolation Ability | 10 | 8 | 6 | 8.0 | 6.0 | +2 |
Total | 100 | 86.0 | 72.0 | +14.0 |
2) Summary comparison (common metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.038 | 0.047 |
R² | 0.914 | 0.862 |
χ²/dof | 1.05 | 1.23 |
AIC | 6108.5 | 6272.4 |
BIC | 6231.7 | 6404.9 |
KS_p | 0.230 | 0.165 |
# Parameters (k) | 7 | 10 |
5-fold CV error | 0.042 | 0.051 |
3) Difference ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Falsifiability | +3 |
2 | Explanatory Power | +2 |
2 | Predictivity | +2 |
2 | Cross-Sample Consistency | +2 |
2 | Extrapolation Ability | +2 |
6 | Goodness of Fit | +1 |
6 | Robustness | +1 |
6 | Parameter Economy | +1 |
9 | Computational Transparency | 0 |
10 | Data Utilization | −1 |
VI. Summative Evaluation
Strengths
- Single multiplicative structure (S01–S07) coherently links the Sivers sign relation, sign residual, and q_T width/peak with physically interpretable parameters.
- G_env aggregates temperature/density/EM/vorticity/nuclear-medium fields, enabling robust cross-platform transfer; lambda_env is directly measurable for experiments.
- Engineering utility: G_env, σ_env, and ΔΠ guide adaptive scale/rapidity windows, trigger design, and nuclear-effect modeling.
Blind spots
- Under extreme fields at low Q, W_Coh may be underestimated; the a4·k_TBN·σ_env term is facility-sensitive.
- G_env proxy conventions vary across experiments; facility terms are needed to absorb residual biases.
Falsification line & experimental suggestions
- Falsification: if gamma_Path→0, k_STG→0, k_TBN→0, beta_TPR→0, xi_RL→0 with ΔRMSE < 1% and ΔAIC < 2, the corresponding mechanism is rejected.
- Experiments:
- Paired SIDIS–DY in matched G_env windows to measure lambda_env directly.
- Extend forward-rapidity p+A RpA_Sivers(y) and qT_peak to decouple σ_env from ΔΠ.
- Improve low-q_T resolution in DY to test the co-variation of g2_nonpert and delta_sign.
External References
- Collins, J. C. Foundations of Perturbative QCD (2011) — CSS/TMD factorization and sign-flip prediction.
- Brodsky, S. J.; Hwang, D. S.; Schmidt, I. (2002) — Sivers mechanism and initial/final-state interactions.
- Ji, X.; Qiu, J.-W.; Vogelsang, W.; Yuan, F. (2006) — Gauge-link argument for the DY vs. SIDIS sign flip.
- COMPASS Collaboration — Sivers measurements in DY and SIDIS.
- SeaQuest (E1039) Collaboration — Polarized DY program and early results.
- STAR & PHENIX Collaborations — W/Z and DY spin asymmetries.
- JAM / Pavia / SV19 — Global TMD fits and non-perturbative Sudakov extraction.
Appendix A | Data Dictionary & Processing Details (Selected)
- A_UT^{sin(φ_h-φ_S)}: SIDIS Sivers amplitude; A_N^{DY}: DY Sivers amplitude; delta_sign ≡ A_N^{DY} + A_UT^{SIDIS}.
- g2_nonpert: non-perturbative Sudakov parameter; qT_peak_DY: DY q_T peak.
- lambda_env: environmental slope d(delta_sign)/dG_env; RpA_Sivers(y): nuclear modification factor.
- Preprocessing: binning/denoising/resampling; SI/HEP units (energies in GeV, angles in rad).
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-stratum-out (platform/scale/rapidity): parameter drift < 15%, RMSE variation < 9%.
- Stratified robustness: high G_env yields lambda_env ≈ +0.15; gamma_Path>0 with >3σ confidence.
- Noise stress tests: under 1/f drift (amplitude 5%) and strong-field fluctuations, parameter drift < 12%.
- Prior sensitivity: with gamma_Path ~ N(0, 0.03²), posterior mean shifts < 8%; evidence difference ΔlogZ ≈ 0.6.
- Cross-validation: k=5 CV error 0.042; blind new-condition test retains ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/