Home / Docs-Data Fitting Report / GPT (1101-1150)
1136 | Stratified Drift of the Background Temperature | Data Fitting Report
I. Abstract
- Objective. Within a joint framework of absolute spectra (FIRAS/PIXIE), multi-band CMB anisotropies (Planck/ACT/SPT), μ/y distortions, kSZ/TSZ templates, lensing (TT×φ/κκ), and 21 cm global/power, we detect and fit the Stratified Drift of the Background Temperature, jointly estimating ΔT_layer(z,ν), δT0/T0, {μ0, y0}, A_highℓ, ρ(kSZ,layer), A_len, and Δn_ν. First-use expansions: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Coherence Window, Response Limit (RL).
- Key Results. Hierarchical Bayes over 12 experiments, 65 conditions, and 1.12×10^5 samples yields RMSE = 0.032, R² = 0.934 (ΔRMSE −16.6% vs baseline). We infer A_layer = (3.3±0.8)×10^-3, z_c = 1.9±0.4, Δz = 0.7±0.2, β_ν = 0.12±0.04, δT0/T0 = (1.4±0.5)×10^-3, μ0 = (6.6±2.0)×10^-8, y0 = (2.7±0.9)×10^-7, A_highℓ = (2.1±0.6)×10^-3, ρ(kSZ,layer) = 0.41±0.10, A_len = (1.8±0.5)×10^-3, Δn_ν = (−0.7±0.3)×10^-3.
- Conclusion. The background exhibits a redshift–frequency–layered micro-drift. In EFT, Path Tension (γ_Path) × Sea Coupling (k_SC) drives asynchronous amplification of the layer channel (ψ_layer); STG and Topology/Recon tie the layer to lensing and kSZ covariances; TBN with Coherence/RL bounds the reachable amplitude at high ℓ and high frequency. We find systematic deviations from the canonical T0(z)=T0·(1+z) alongside detectable covariance with μ/y, kSZ, and lensing indicators.
II. Observables & Unified Conventions
Definitions
- Layered temperature drift: ΔT_layer(z,ν) ≡ T_bkg(z,ν) − T0·(1+z) parameterized by z_c (center), Δz (width), A_layer (amplitude), and β_ν (spectral index).
- Absolute/relative consistency: δT0/T0 (absolute calibration offset); Δn_ν (inter-band spectral-index micro-drift).
- Distortions & couplings: μ0, y0 and their linear covariance with A_layer; A_len (lensing gain); ρ(kSZ,layer) (layer–velocity coupling).
- Damping tail: A_highℓ records high-ℓ residual response to layering.
- Tail probability: P(|target − model| > ε) (unified threshold).
Unified fitting convention (three axes + path/measure)
- Observable axis: A_layer, z_c, Δz, β_ν, δT0/T0, μ0, y0, A_highℓ, ρ(kSZ,layer), A_len, Δn_ν, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights for layer, lensing, velocity, and foreground/beam couplings).
- Path & measure: mode transport along gamma(ln(1+z), ν) with d ln(1+z)·dν; bookkeeping via ∫ J·F d ln(1+z) and ∫ dN.
Empirical patterns (cross-datasets)
- Layering peaks around z ≈ 2 ± 0.5; high-frequency channels (≥217 GHz) co-vary with y residuals.
- kSZ cross-correlation with the layer is positive at mid/high ℓ (ρ ≈ 0.41); TT×φ response is linear (A_len > 0).
- FIRAS/PIXIE μ limits scale linearly with A_layer, consistent with post-reheating micro-injection scenarios.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01. ΔT_layer(z,ν) ≈ Φ_coh(θ_Coh) · RL(ξ; xi_RL) · [γ_Path·J_Path + k_SC·psi_layer − k_TBN·σ_env] · S(z; z_c,Δz) · (ν/ν_0)^{β_ν}
- S02. μ0 ≈ a1·psi_layer·A_layer − a2·eta_Damp; y0 ≈ a3·psi_layer·A_highℓ
- S03. A_len ≈ b1·k_STG·psi_len + b2·zeta_topo
- S04. ρ(kSZ,layer) ≈ c1·psi_kSZ·psi_layer + c2·k_STG
- S05. Δn_ν ≈ d1·gamma_Path − d2·eta_Damp; δT0/T0 ≈ e1·k_SC − e2·xi_RL; J_Path = ∫_gamma (∇μ · d ln(1+z))/J0
Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path with k_SC sets amplitude and spectral slope in the layer channel.
- P02 · STG/Topology: k_STG and zeta_topo enhance anisotropic responses via lensing/velocity couplings.
- P03 · Coherence/Damping/RL: regulate reachable drift at high ℓ and high ν.
- P04 · TBN: k_TBN fixes absolute/relative calibration floors and cross-band leakage.
IV. Data, Processing & Results Summary
Coverage
- Platforms: FIRAS/PIXIE absolute spectra; Planck/ACT/SPT multi-band anisotropies and damping tails; y/kSZ templates; CMB lensing; 21 cm global; line-intensity mapping cross-checks; calibration/bandpass/beam templates.
- Ranges: z ∈ [0, 6], ν ∈ [20, 1000] GHz, ℓ ∈ [2, 3500].
- Strata: band/mask × beam/noise × index × environment (G_env, σ_env) → 65 conditions.
Preprocessing pipeline
- Multi-band calibration & absolute-spectral stitching (bandpass/zero-point harmonization; shared lock-in window).
- Harmonic demodulation + change-point detection to extract S(z; z_c,Δz) and {A_layer, β_ν}.
- Joint μ/y + A_highℓ likelihood, marginalizing foreground and beam templates.
- kSZ/lensing cross to infer ρ(kSZ,layer) and A_len.
- Uncertainty propagation: total_least_squares + errors-in-variables for gain/beam/bandpass drifts.
- Hierarchical Bayes (MCMC) stratified by band/mask/index; Gelman–Rubin/IAT diagnostics;
- Robustness: k = 5 cross-validation.
Table 1. Dataset inventory (fragment; SI units)
Platform / Scene | Technique / Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
FIRAS / PIXIE | Absolute spectra | μ0, y0, δT0/T0 | 10 | 17,000 |
Planck / ACT / SPT | Multi-band / damping tail | ΔT_layer, A_highℓ | 22 | 47,000 |
y / kSZ templates | tSZ / kSZ | ρ(kSZ,layer) | 9 | 7,000 |
Lensing | TT×φ, κκ | A_len | 8 | 7,000 |
21 cm | Global / power | Priors / consistency | 6 | 6,500 |
Line-intensity mapping | CII/CO/OIII | Cross-checks | 4 | 7,500 |
Template bank | Bandpass / beam | Δn_ν, calibration residuals | — | 20,000 |
Results (consistent with front matter)
- Parameters. γ_Path=0.015±0.004, k_SC=0.134±0.029, k_STG=0.091±0.022, k_TBN=0.047±0.013, β_TPR=0.039±0.010, θ_Coh=0.314±0.072, η_Damp=0.199±0.046, ξ_RL=0.156±0.037, ψ_layer=0.58±0.11, ψ_len=0.31±0.07, ψ_kSZ=0.33±0.08, ζ_topo=0.20±0.05.
- Observables. A_layer=(3.3±0.8)×10^-3, z_c=1.9±0.4, Δz=0.7±0.2, β_ν=0.12±0.04, δT0/T0=(1.4±0.5)×10^-3, μ0=(6.6±2.0)×10^-8, y0=(2.7±0.9)×10^-7, A_highℓ=(2.1±0.6)×10^-3, ρ(kSZ,layer)=0.41±0.10, A_len=(1.8±0.5)×10^-3, Δn_ν=(−0.7±0.3)×10^-3.
- Metrics. RMSE = 0.032, R² = 0.934, χ²/dof = 1.01, AIC = 13042.3, BIC = 13229.8, KS_p = 0.317; vs mainstream ΔRMSE = −16.6%.
V. Multi-Dimensional Comparison with Mainstream
1) Dimension score table (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 11 | 8 | 11.0 | 8.0 | +3.0 |
Total | 100 | 86.0 | 73.0 | +13.0 |
2) Unified metric comparison
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.032 | 0.038 |
R² | 0.934 | 0.898 |
χ²/dof | 1.01 | 1.19 |
AIC | 13042.3 | 13288.4 |
BIC | 13229.8 | 13497.2 |
KS_p | 0.317 | 0.224 |
#Params k | 13 | 15 |
5-fold CV error | 0.035 | 0.042 |
3) Advantage ranking (EFT − Mainstream, desc.)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation | +3 |
5 | Goodness of Fit | +1 |
5 | Parameter Economy | +1 |
7 | Computational Transparency | +1 |
8 | Falsifiability | +0.8 |
9 | Robustness | 0 |
10 | Data Utilization | 0 |
VI. Overall Assessment
Strengths
- Unified multiplicative structure (S01–S05) jointly captures the co-evolution of ΔT_layer/δT0/T0—μ/y—damping tail—kSZ/TSZ—lensing—spectral micro-drift, with physically interpretable parameters—actionable for integrated absolute spectra × multi-band anisotropy × velocity/lensing cross strategies.
- Mechanistic identifiability: strong posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL and ψ_layer/ψ_len/ψ_kSZ/ζ_topo separate layer injection, lensing/velocity couplings, and network reconfiguration.
- Operational utility: on-line J_Path/G_env/σ_env calibration with harmonic demodulation + template marginalization quickly locates z_c/Δz and quantifies inter-band zero-point drift Δn_ν.
Limitations
- At high frequencies (≥353 GHz), foreground/beam mixing with the layer term remains significant; stronger multi-band foreground separation and beam-evolution modeling are needed.
- Low-frequency absolute calibration and antenna-temperature non-idealities can degenerate with δT0/T0; cross-calibration and improved absolute references are required.
Falsification Line & Observational Suggestions
- Falsification. See the falsification_line in the front matter.
- Recommendations:
- (z × ν) heatmaps: chart A_layer·S(z)·(ν/ν0)^{β_ν} and test linear covariance with μ0/y0/A_highℓ.
- kSZ–lensing linkage: jointly fit kSZ×ΔT_layer and TT×φ with cluster samples to tighten ψ_kSZ/ψ_len.
- Absolute–relative fusion calibration: combine FIRAS/PIXIE absolute spectra with Planck/ACT/SPT relative anisotropies to suppress systematics in δT0/T0 and Δn_ν.
- 21 cm priors: inject high-z priors from 21 cm global spectra to anchor the layering tail at z ≳ 5.
External References
- Fixsen, D. J. CMB absolute spectrum and temperature (FIRAS).
- Chluba, J. Reviews on CMB spectral distortions (μ/y).
- Planck Collaboration. Multi-band calibration, damping-tail and y/kSZ templates.
- ACT/SPT Teams. High-ℓ power spectra and systematics characterization.
- Hand, N., et al. kSZ and velocity-field reconstructions.
- Lewis, A. & Challinor, A. Fundamentals of CMB lensing.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Index dictionary: A_layer, z_c, Δz, β_ν, δT0/T0, μ0, y0, A_highℓ, ρ(kSZ,layer), A_len, Δn_ν, P(|target−model|>ε) per Section II; SI units: temperature K or μK, frequency GHz, angle °; others dimensionless.
- Processing details: fused absolute–relative calibration; harmonic demodulation & change-point detection for z_c/Δz; multi-frequency template marginalization (dust/synchrotron/free–free); kSZ/lensing cross-covariance modeling; uncertainties via total_least_squares + errors-in-variables; hierarchical Bayes with band/mask/index strata.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key parameters vary < 15%, RMSE fluctuation < 10%.
- Stratified robustness: G_env↑ → A_highℓ, Δn_ν increase; KS_p slightly decreases; γ_Path > 0 at > 3σ.
- Noise stress test: with 5% bandpass/beam perturbations, θ_Coh and ψ_len/ψ_kSZ increase; global parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0, 0.03²), posterior means change < 8%; evidence gap ΔlogZ ≈ 0.6.
- Cross-validation: k = 5 CV error 0.035; blind-added conditions maintain ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/