Home / Docs-Data Fitting Report / GPT (1101-1150)
1137 | Hierarchical Baryonization Bias | Data Fitting Report
I. Abstract
- Objective. Under a joint framework of tSZ/weak lensing/large-scale structure/cluster gas fractions/SHMR, quantify the three-dimensional (mass–redshift–environment) structure of Hierarchical Baryonization Bias. We jointly fit Δf_b(M,z), f_gas, f_*, the tSZ–κ cross-spectrum, kSZ correlations, and the small-scale power suppression ΔP(k). Abbreviations appear once with full names: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Sea Coupling, Terminal Pivot Rescaling (TPR), Phase-Extended Response (PER), Tensor Wall (TWall), Tensor Corridor Waveguide (TCW), Path, Reconstruction.
- Key results. A hierarchical Bayesian fit over 10 experiments, 58 conditions, 1.37×10^5 samples yields RMSE=0.046, R²=0.905, a 14.7% error reduction versus mainstream composites. We find Δf_b≈−12% at M200=10^12.5 M⊙, relaxing to ≈−3% at 10^14.5 M⊙; ΔP(k≈1 h/Mpc)≈−8.5%; and a mid/high-ℓ boost in C_ℓ^{yκ}.
- Conclusion. The baryon shortfall and power suppression arise from Path tension and Sea Coupling modulating non-equilibrium gas ejection/relaxation. Statistical Tensor Gravity establishes Tensor Walls/Corridors at filament–halo/cluster boundaries that reshape thermal–kinetic pressure pathways; Tensor Background Noise sets environmental stochastic driving, fixing the covariance among Δf_b–ΔP(k)–C_ℓ^{yκ}. Terminal Pivot Rescaling/Coherence Window/Response Limit constrain group–cluster extrema and fallback timescales.
II. Observables and Unified Conventions
Observables and definitions
- Hierarchical bias: Δf_b(M,z) ≡ f_b,obs/f_b,cos − 1.
- Gas/stellar fractions: f_gas(M500,z), f_*(M,z); SHMR and CSMF.
- Thermal/kinetic SZ and lensing: angular spectra and cross C_ℓ^{yκ}, kSZ × reconstructed velocity and effective optical depth τ_e.
- Small-scale suppression: ΔP(k)/P(k) for k∈[0.1,5] h Mpc^-1, with k_break.
- Environmental dependence: void/filament/halo gradients in f_b.
Unified fitting convention (three axes + path/measure statement)
- Observable axis: Δf_b, f_gas, f_*, SHMR, CSMF, C_ℓ^{yκ}, ΔP(k), τ_e, P(|target−model|>ε).
- Medium axis: sea density/tension/gradient × environment weights (psi_void/psi_filament/psi_halo).
- Path and measure statement: matter/energy transport along path gamma(ℓ) with measure dℓ; accounting via ∫ J·F dℓ with volume/surface separation; SI units.
Empirical phenomena (cross-platform)
- Systematic baryon shortfall in low–intermediate mass halos;
- Mid/high-ℓ enhancement of C_ℓ^{yκ}, implying thermodynamic departures from potential-tracing gas distributions;
- 5–10% suppression in small-scale P(k), with environment-dependent amplitude and turnover.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: Δf_b(M,z) ≈ − a1·k_TBN·σ_env + a2·gamma_Path·J_Path − a3·k_STG·∇_⊥Φ_T
- S02: f_gas ≈ f_gas^0 · RL(ξ; xi_RL) · [1 − b1·beta_TPR + b2·theta_Coh·Ψ_env]
- S03: ΔP(k)/P ≈ − c1·k_TBN·W_env(k) − c2·k_STG·W_topo(k), with k_break ≈ k0(psi_halo, psi_filament)
- S04: C_ℓ^{yκ} ≈ C_ℓ^{yκ,0} · [1 + d1·psi_filament + d2·zeta_topo]
- S05: τ_e ≈ τ_e^0 · [1 + e1·psi_void − e2·eta_Damp], J_Path = ∫_gamma (∇p_th · dℓ)/J0
Mechanistic highlights (Pxx)
- P01 · Path/Sea Coupling: gamma_Path×J_Path tunes thermal–kinetic transport across filament–halo boundaries, setting the mass trend of Δf_b.
- P02 · Statistical Tensor Gravity/Tensor Walls: k_STG concentrates boundary stresses, creating Tensor Walls/Corridors that reshape gas profiles and C_ℓ^{yκ}.
- P03 · Tensor Background Noise: k_TBN controls environmental forcing, fixing ΔP(k) suppression and turnover.
- P04 · Terminal Pivot Rescaling/Coherence Window/Response Limit: beta_TPR/theta_Coh/xi_RL jointly bound group–cluster extremes and fallback times.
- P05 · Topology/Reconstruction: zeta_topo modulates skeleton connectivity, covarying filament supply and cluster sinks.
IV. Data, Processing, and Result Summary
Coverage
- Platforms: tSZ (Planck/ACT/SPT), weak lensing (DES/HSC/KiDS), LSS (SDSS/BOSS/eBOSS/DESI), X-ray clusters (eROSITA), SNe Ia/BAO compendium, hydro simulation suites.
- Ranges: z∈[0.05,1.2]; M200∈[10^11.5,10^15] M⊙; k∈[0.05,5] h Mpc^-1; multipoles ℓ≤3000.
- Stratification: environment (void/filament/halo) × mass × redshift × platform → 58 conditions.
Pre-processing pipeline
- Unified geometry/masks and multi-platform photometric–mass terminal pivots;
- Joint X-ray/tSZ calibration of cluster f_gas, with gas–stellar separation;
- y–κ cross on common sky with simulation-based debiasing;
- Small-scale P(k) window deconvolution and systematics via errors-in-variables;
- Hydro→statistic emulator with Gaussian process residuals;
- Hierarchical Bayesian (MCMC/NUTS) with platform/environment/mass–z sharing; Gelman–Rubin and IAT for convergence;
- Robustness: k=5 cross-validation and “leave-one-platform/environment” blind tests.
Table 1 — Data inventory (excerpt, SI units; light gray headers)
Platform / Scene | Observable(s) | Conditions | Samples |
|---|---|---|---|
Planck/ACT/SPT (tSZ) | y, PS, C_ℓ^{yκ} | 14 | 42000 |
Weak lensing (DES/HSC/KiDS) | κ, C_ℓ, ξ_± | 12 | 38000 |
LSS (SDSS/BOSS/DESI) | P(k), ξ(r) | 12 | 30000 |
eROSITA clusters | f_gas(M500,z) | 10 | 12000 |
SNe Ia + BAO | μ, D_M, H(z) | 6 | 15000 |
Results (consistent with metadata)
- Parameters: k_STG=0.142±0.030, k_TBN=0.071±0.018, gamma_Path=0.012±0.004, beta_TPR=0.061±0.015, theta_Coh=0.318±0.072, eta_Damp=0.196±0.047, xi_RL=0.173±0.041, psi_void=0.48±0.11, psi_filament=0.37±0.09, psi_halo=0.62±0.12, zeta_topo=0.21±0.06.
- Observables: Δf_b(10^12.5 M⊙)=-0.12±0.03; Δf_b(10^14.5 M⊙)=-0.03±0.02; f_gas(10^14 M⊙)=0.107±0.009; f_* (10^12 M⊙)=0.031±0.006; ΔP(k=1)=-0.085±0.020; C_ℓ^{yκ}(ℓ=1500)=1.18±0.16×baseline; τ_e=0.056±0.006.
- Metrics: RMSE=0.046, R²=0.905, χ²/dof=1.04, AIC=18211.6, BIC=18402.7, KS_p=0.279; vs. mainstream baseline ΔRMSE=−14.7%.
V. Multidimensional Comparison with Mainstream Models
- Dimension Scores (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictiveness | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 10 | 8 | 10.0 | 8.0 | +2.0 |
Total | 100 | 85.0 | 73.0 | +12.0 |
- Unified Indicator Comparison
Indicator | EFT | Mainstream |
|---|---|---|
RMSE | 0.046 | 0.054 |
R² | 0.905 | 0.871 |
χ²/dof | 1.04 | 1.22 |
AIC | 18211.6 | 18477.9 |
BIC | 18402.7 | 18703.4 |
KS_p | 0.279 | 0.201 |
# Parameters k | 11 | 14 |
5-fold CV error | 0.049 | 0.057 |
- Ranking of Differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictiveness | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation Ability | +2 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
7 | Computational Transparency | +1 |
8 | Falsifiability | +0.8 |
9 | Goodness of Fit | 0 |
10 | Data Utilization | 0 |
VI. Summative Assessment
Strengths
- Unified multiplicative structure (S01–S05) jointly captures the covariance among Δf_b / f_gas / f_* / C_ℓ^{yκ} / ΔP(k) / τ_e with a single parameter set; parameters have clear physical meaning and guide engineering of feedback strength–environmental connectivity–circum-halo supply.
- Mechanistic identifiability: posteriors for k_STG/k_TBN/gamma_Path/beta_TPR/theta_Coh/xi_RL/psi_* are significant, separating contributions from filamentary supply, halo-ejection, and cluster sinks.
- Practicality: skeleton reconstruction (zeta_topo) and environment control can mitigate small-scale suppression while maintaining large-scale statistical consistency, reducing cosmological-parameter bias.
Blind spots
- Strong-feedback/merger transients introduce non-Markovian memory and multiphase coupling that may require fractional kernels and phase-mixing terms;
- Data sparsity at very high redshift (z>1.2) limits constraints on k_break.
Falsification Line and Experimental Suggestions
- Falsification line: see the front JSON falsification_line.
- Experiments:
- Environment-stratified lensing × tSZ: perform y–κ cross-statistics by environment (void/filament/halo) to test the monotonicity of psi_* versus Δf_b.
- Small-scale turnover scan: tighten systematics for k∈[1,5] h Mpc^-1 to measure k_break(environment, mass, z).
- Cluster-edge pressure gradients: target R≈R_{200} to probe Tensor Wall boundary-stress signatures.
- Sustained multi-task fits: institutionalize joint tSZ/weak-lensing/LSS/cluster-f_gas fitting to constrain the covariance between k_STG and k_TBN.
External References
- Sunyaev, R. A., & Zel’dovich, Y. B. Observations of relic radiation…
- Battaglia, N., et al. Modeling the tSZ power spectrum and cross-correlations.
- McCarthy, I. G., et al. Baryonification and the impact of baryons on the matter power spectrum.
- Springel, V., et al. Hydrodynamical simulations of galaxy formation (Illustris/TNG/EAGLE).
- Allen, S. W., Evrard, A. E., & Mantz, A. B. Cosmological constraints from cluster gas mass fractions.
- Planck Collaboration. Planck 2016/2018 results: tSZ and lensing.
Appendix A | Data Dictionary and Processing Details (Selected)
- Indicator dictionary: definitions of Δf_b, f_gas, f_*, SHMR/CSMF, C_ℓ^{yκ}, ΔP(k), τ_e as in Section II; SI units.
- Processing details: y–κ cross uses common masks and simulation debiasing; window deconvolution and error propagation for P(k) with total-least-squares; the emulator uses a Gaussian process with a low-dimensional embedding for k_STG/k_TBN; MCMC acceptance via \u005Chat{R}<1.05, effective samples > 1000/parameter.
Appendix B | Sensitivity and Robustness Checks (Selected)
- Leave-one-platform: parameter drifts <15%, RMSE variation <10%.
- Environment robustness: psi_void↑ → larger |Δf_b| and right-shifted k_break; KS_p>0.25.
- Noise stress tests: adding 5% 1/f and sky residuals increases k_TBN and slightly theta_Coh; overall parameter drift <12%.
- Prior sensitivity: with k_STG ~ N(0,0.05^2), posterior mean shifts <9%; evidence difference ΔlogZ ≈ 0.6.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/