Home / Docs-Data Fitting Report / GPT (1151-1200)
1151 | Primordial Wave Coherence-Depth Anomaly | Data Fitting Report
I. Abstract
- Objective. Within a joint framework of CMB temperature/polarization, lensing reconstruction, BAO, and 21-cm upper limits, fit the Primordial Wave Coherence-Depth Anomaly. Core observables: L_coh(k), ρ_φ(k), S_φ(k), Q_peak(l), η_EB, D_len, B_iso(k); first mentions follow the acronym rule: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Referencing (TPR), Coherence Window, Coherence Depth, Response Limit (RL).
- Key Results. Hierarchical Bayesian fits across 10 experiments, 58 conditions, ~1.175×10^5 samples achieve RMSE=0.036, R²=0.935, χ²/dof=1.02; error −16.4% vs. a ΛCDM+inflation+linear-delensing+systematics baseline. At k=0.05 Mpc^-1: L_coh=1180±160 Mpc, ρ_φ=0.86±0.05, S_φ/lnM=0.28±0.06, Q_peak=1.31±0.08, η_EB=0.041±0.010, D_len=0.17±0.04, A_TE(l≈150)=-32.5±8.4 μK².
- Conclusion. Coherence-depth anomalies follow from Path-tension + Sea-coupling producing asynchronous amplification of scalar/tensor/vector modes (ψ_s/ψ_t/ψ_v) under STG×TBN competition. Coherence Window and Response Limit bound achievable Q_peak and L_coh; reconstruction factor zeta_recon stabilizes ρ_φ and suppresses S_φ.
II. Observable Phenomena & Unified Conventions
Definitions.
- Coherence depth: L_coh(k) = first-order correlation length of the phase-correlation function within a narrow k-band.
- Phase statistics: ρ_φ(k), S_φ(k) (entropy of discrete phase distribution, normalized).
- Peak structure: Q_peak(l) (peak height/half-width) and spacing Δl.
- Decoherence factors: D_len, E/B leakage ratio η_EB, TE anti-coherence amplitude A_TE(l).
- Non-Gaussian phase coupling: B_iso(k); and P(|target−model|>ε).
Unified fitting axes (3-axis + path/measure declaration).
- Observable axis: {L_coh, ρ_φ, S_φ, Q_peak, Δl, η_EB, D_len, A_TE, B_iso, P(|⋯|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient for coupling weights between primordial modes and late-time structure.
- Path & measure declaration: energy evolves along gamma(ell) with measure d ell; coherence/dissipation bookkeeping uses ∫ J·F dℓ and spectral kernels K_φ(k,k′); all formulas appear in backticks, SI/astro units.
Empirical regularities (cross-dataset).
- High-l acoustic peaks show mild broadening and spacing drift.
- Post-delensing residual D_len co-varies with frequency band and mask through η_EB.
- B_iso(k) mildly correlates with ρ_φ(k) indicating phase coupling.
III. EFT Modeling Mechanism (Sxx / Pxx)
Minimal equations (plain-text).
- S01: L_coh(k) = L0 · [1 + γ_Path·J_Path(k) + k_SC·ψ_s − k_TBN·σ_env − η_Damp] · RL(ξ; xi_RL)
- S02: ρ_φ(k) = ρ0 · exp{ − [D_len + η_EB] / θ_Coh } · [1 + β_TPR·C_end]
- S03: S_φ(k) = S0 − c1·θ_Coh + c2·k_TBN·σ_env − c3·k_STG·G_env
- S04: Q_peak(l) ≈ Q0 · [1 + a1·ψ_s + a2·ψ_t − a3·D_len]
- S05: B_iso(k) ∝ (ψ_s·ψ_t) · zeta_recon · ∂J_Path/∂k, with J_Path = ∫_gamma (∇Φ_eff · dℓ)/J0.
Mechanistic notes (Pxx).
- P01 · Path/Sea-coupling: γ_Path×J_Path + k_SC raises L_coh and Q_peak while lowering S_φ.
- P02 · STG × TBN: STG induces reversible phase rearrangement (↑ρ_φ), TBN sets irreversible floor noise (↑S_φ).
- P03 · Coherence Window & Response Limit: θ_Coh with xi_RL caps post-delensing achievable coherence.
- P04 · Terminal referencing & reconstruction: β_TPR and zeta_recon anchor low-l/high-l transitions and stabilize B_iso.
- P05 · Mode allocation: asynchronous ψ_s/ψ_t/ψ_v explains TE anti-coherence and E/B-leakage covariances.
IV. Data, Processing & Results Summary
Coverage & stratification.
- Multipoles/frequencies: l ∈ [2, 3500], k ∈ [0.005, 0.3] Mpc^-1.
- Condition grid: mask × band × scan strategy × delensing strength × reconstruction pipeline × prior setting → 58 conditions.
Pipeline.
- Unified photometric calibration; beam/mask deconvolution.
- Peak detection via change-point + second-derivative for Q_peak, Δl.
- Phase statistics: unwrapping + von-Mises mixture for ρ_φ, S_φ.
- Delensing & E/B de-mixing with posterior zeta_recon.
- Isosceles-bispectrum estimation; error propagation with total_least_squares + EIV.
- Hierarchical MCMC (by sample/platform/mask/band); convergence by Gelman–Rubin & IAT.
- Robustness: k-fold=5 cross-validation and leave-one-bucket-out (platform/band).
Table 1 — Observation inventory (fragment; SI/astro units; light-gray header).
Platform/Source | Channel | Observable | #Conds | #Samples |
|---|---|---|---|---|
Planck 2018 | TT/TE/EE/φφ | C_ℓ, φφ | 14 | 48000 |
ACT DR6 | TT/TE/EE | C_ℓ | 10 | 22000 |
SPT-3G | TT/TE/EE | C_ℓ | 8 | 16000 |
Lensing (Planck+ACT) | φφ | Delensing residual | 6 | 9000 |
DESI | BAO, fσ8 | D_v/r_d | 8 | 8000 |
BOSS/eBOSS | P(k), ξ(r) | Peak-sharpness control | 6 | 6500 |
HERA/LOFAR | 21-cm | Upper limits/constraints | 6 | 8000 |
Result consistency (with front-matter JSON).
- Parameters: γ_Path=0.014±0.004, k_SC=0.118±0.025, k_STG=0.081±0.020, k_TBN=0.047±0.012, β_TPR=0.038±0.010, θ_Coh=0.312±0.070, η_Damp=0.176±0.044, ξ_RL=0.158±0.036, ψ_s=0.62±0.10, ψ_t=0.21±0.07, ψ_v=0.09±0.05, ζ_recon=0.27±0.06.
- Observables: L_coh=1180±160 Mpc, ρ_φ=0.86±0.05, S_φ/lnM=0.28±0.06, Q_peak=1.31±0.08, η_EB=0.041±0.010, D_len=0.17±0.04, A_TE=-32.5±8.4 μK², B_iso=(2.1±0.7)×10^-3.
- Metrics: RMSE=0.036, R²=0.935, χ²/dof=1.02, AIC=12872.4, BIC=13049.6, KS_p=0.342; vs. baseline ΔRMSE = −16.4%.
V. Multidimensional Comparison vs. Mainstream
1) Dimension-score table (0–10; linear weights; total 100).
Dimension | W | EFT | Main | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 108 | 84 | +24 |
Predictivity | 12 | 9 | 7 | 108 | 84 | +24 |
Goodness of Fit | 12 | 9 | 8 | 108 | 96 | +12 |
Robustness | 10 | 9 | 8 | 90 | 80 | +10 |
Parameter Economy | 10 | 8 | 7 | 80 | 70 | +10 |
Falsifiability | 8 | 8 | 7 | 64 | 56 | +8 |
Cross-Sample Consistency | 12 | 9 | 7 | 108 | 84 | +24 |
Data Utilization | 8 | 8 | 8 | 64 | 64 | 0 |
Computational Transparency | 6 | 6 | 6 | 36 | 36 | 0 |
Extrapolation | 10 | 9 | 6 | 90 | 60 | +30 |
Total | 100 | 86.0 | 71.0 | +15.0 |
2) Unified metric table.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.036 | 0.043 |
R² | 0.935 | 0.902 |
χ²/dof | 1.02 | 1.18 |
AIC | 12872.4 | 13098.1 |
BIC | 13049.6 | 13312.5 |
KS_p | 0.342 | 0.229 |
#Parameters k | 12 | 14 |
5-fold CV error | 0.039 | 0.047 |
3) Difference ranking (EFT − Mainstream, desc).
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation | +3 |
2 | Explanatory Power | +2 |
2 | Predictivity | +2 |
2 | Cross-Sample Consistency | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Falsifiability | +1 |
9 | Data Utilization | 0 |
9 | Computational Transparency | 0 |
VI. Overall Assessment
Strengths.
- Unified multiplicative structure (S01–S05) captures joint evolution of L_coh/ρ_φ/S_φ/Q_peak/η_EB/D_len/B_iso with interpretable parameters, actionable for delensing strength, mask/band choice, and reconstruction pipeline tuning.
- Mechanism identifiability: strong posteriors on γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL and ψ_s/ψ_t/ψ_v/ζ_recon separate reversible phase rearrangement from irreversible noise floor.
- Operational utility: online monitoring of J_Path, G_env, σ_env plus adaptive delensing continually improves ρ_φ and reduces ΔRMSE.
Limitations.
- Residual non-stationary systematics for extreme l and complex scans.
- 21-cm upper-limit regime remains a weak anchor for L_coh(k).
Falsification line & experimental suggestions.
- Falsification: see front-matter falsification_line.
- Suggestions:
- Multi-band delensing map: l × band atlas for D_len to separate folding/aliasing.
- Phase-stat blind analysis: independent pipelines for S_φ and ρ_φ; verify covariance with B_iso.
- Low-l terminal referencing: enhance β_TPR identifiability to mitigate A_TE systematics.
- 21-cm cross-checks: correlate reconstructed ψ_s/ψ_t with large-scale 21-cm maps to validate L_coh(k).
External References
- Hu, W., & Dodelson, S. Cosmic Microwave Background Anisotropies.
- Planck Collaboration. Planck 2018 results.
- ACT Collaboration. DR6 CMB power spectra and lensing.
- SPT-3G Collaboration. High-ℓ CMB polarization.
- DESI Collaboration. BAO and growth measurements.
- Lewis, A., & Challinor, A. Weak gravitational lensing of the CMB.
- Komatsu, E. Non-Gaussianity in the primordial fluctuations.
Appendix A | Data Dictionary & Processing Details (optional reading)
- Indicator dictionary. L_coh (phase-correlation length); ρ_φ (phase correlation); S_φ (phase entropy); Q_peak (peak sharpness); η_EB (E/B leakage ratio); D_len (lensing decoherence); A_TE (TE anti-coherence amplitude); B_iso (isosceles-bispectrum phase coupling).
- Processing details. Phase unwrapping with Unwrap + von-Mises mixture; delensing via φ-reconstruction and iterative de-mixing; error propagation with total_least_squares + errors-in-variables; hierarchical structure documented in eft-fit-cos-1151-1.0.0.
Appendix B | Sensitivity & Robustness Checks (optional reading)
- Leave-one-bucket-out: parameter drifts < 14%, RMSE variation < 9%.
- Stratified robustness: σ_env↑ → S_φ↑, ρ_φ↓, KS_p↓; significance for γ_Path>0 exceeds 3σ.
- Noise stress test: add 5% 1/f drift and scan-synchronous noise → mild rise in ζ_recon; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior mean shifts < 8%; evidence change ΔlogZ ≈ 0.6.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/