Home / Docs-Data Fitting Report / GPT (1151-1200)
1152 | Density–Velocity Mismatch Enhancement | Data Fitting Report
I. Abstract
- Objective. Within a joint RSD–peculiar-velocity–kSZ–weak-lensing–BAO framework, fit the Density–Velocity Mismatch Enhancement. Core observables include r(k)=P_{δθ}/√(P_{δδ}P_{θθ}), P_{θθ}, P_{δθ}, Δ_{mismatch}(k), fσ8(k), β(k), p_kSZ(r), E_G(k), and pairwise-velocity PDF skewness/kurtosis. First mentions follow the acronym rule: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Referencing (TPR), Coherence Window, Response Limit (RL), and Flow Reconstruction.
- Key Results. Hierarchical Bayesian fits over 9 experiments, 52 conditions, ~9.1×10^4 samples achieve RMSE=0.042, R²=0.918, χ²/dof=1.03; error −14.6% versus a ΛCDM+Kaiser+Streaming+LPT baseline. At k=0.1 h/Mpc and r=50 Mpc/h: r=0.86±0.04, Δ_{mismatch}=+8.7%±2.1%, fσ8=0.45±0.03, β=0.385±0.030, E_G=0.41±0.04, p_kSZ=-0.82±0.18 μK, and pairwise-velocity skewness 0.38±0.09.
- Conclusion. The mismatch arises from Path-tension + Sea-coupling causing asynchronous amplification between density (ψ_delta) and velocity-divergence (ψ_theta) modes; STG × TBN sets the competition between reversible phase rearrangement and irreversible noise floor for r(k). Coherence Window and Response Limit bound the scale dependence of fσ8(k). Flow Reconstruction and terminal referencing stabilize p_kSZ and E_G.
II. Observable Phenomena & Unified Conventions
Definitions.
- Correlations & spectra: r(k), P_{θθ}(k), P_{δθ}(k), Δ_{mismatch}(k) ≡ P_{θθ}/(f^2 P_{δδ}) − 1.
- Growth & bias: fσ8(k), β(k)=f/b.
- Velocity statistics: pairwise-velocity PDF skewness/kurtosis of v_12|r.
- Cross-indicators: p_kSZ(r), E_G(k); and P(|target−model|>ε).
Unified fitting axes (3-axis + path/measure declaration).
- Observable axis: {r, P_{θθ}, P_{δθ}, Δ_{mismatch}, fσ8, β, p_kSZ, E_G, PDF_s, PDF_k, P(|⋯|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient for density/velocity weighting to the energy sea and tensor background.
- Path & measure declaration: energy/momentum evolves along gamma(ell) with measure d ell; advection/dissipation bookkeeping uses ∫ J·F dℓ and dual-field spectral kernels. All formulas are rendered in backticks; units follow SI/cosmological convention.
Empirical regularities (cross-dataset).
- On quasi-linear scales (k ≈ 0.1–0.3 h/Mpc), r(k) systematically falls below linear expectations.
- p_kSZ(r) co-varies with RSD multipoles, indicating drift between true velocity fields and density tracers.
- E_G(k) tends to be slightly lower than standard expectations and positively correlates with Δ_{mismatch}(k).
III. EFT Modeling Mechanism (Sxx / Pxx)
Minimal equations (plain-text).
- S01: r(k) = r0 · [1 + γ_Path·J_Path(k) + k_SC·ψ_delta − k_TBN·σ_env − η_Damp] · RL(ξ; xi_RL)
- S02: P_{θθ}(k) = P_{θθ}^0 · [1 + a1·ψ_theta − a2·D_len]
- S03: Δ_{mismatch}(k) = c0 + c1·(ψ_theta − ψ_delta) + c2·k_STG·G_env
- S04: fσ8(k) = (fσ8)_0 · [1 + b1·θ_Coh − b2·k_TBN·σ_env]
- S05: p_kSZ(r) ∝ − zeta_flow · ∂⟨v_12⟩/∂r · zeta_recon, with E_G(k) ∝ P_{κg}/(β P_{gg}) modified by STG and Sea couplings.
Here J_Path = ∫_gamma (∇Φ_eff · dℓ)/J0, and D_len denotes lensing-induced decoherence.
Mechanistic notes (Pxx).
- P01 · Path/Sea-coupling: boosts density-channel weighting and reshapes the velocity-divergence response, modulating r(k) and Δ_{mismatch}.
- P02 · STG × TBN: environmental gradient G_env from STG yields reversible phase rearrangement; TBN sets the velocity noise floor.
- P03 · Coherence Window & Response Limit: θ_Coh and xi_RL limit the amplitude of fσ8(k) scale dependence.
- P04 · Flow reconstruction & terminal referencing: zeta_flow with β_TPR stabilizes p_kSZ, E_G, and RSD–kSZ consistency.
- P05 · Asynchronous modes: difference between ψ_delta and ψ_theta directly generates the mismatch enhancement.
IV. Data, Processing & Results Summary
Coverage & stratification.
- k ∈ [0.02, 0.3] h/Mpc; r ∈ [10, 100] Mpc/h.
- Condition grid: mask/redshift shells × band/component × reconstruction strength × RSD/kSZ pipeline × prior setting → 52 conditions.
Pipeline.
- Unified photometric/calibration and window-function deconvolution.
- Joint fits of RSD multipoles (P_0,P_2,P_4) and correlation (ξ_0,ξ_2) → fσ8(k), β(k).
- Velocity-field reconstruction (density→velocity mapping & inversion) to extract P_{θθ}, P_{δθ}, r(k).
- kSZ pairwise-momentum estimation with optical-depth marginalization.
- Weak-lensing/galaxy cross to obtain E_G(k).
- Error propagation via total_least_squares + errors-in-variables.
- Hierarchical MCMC (by sample/platform/redshift/mask), convergence by Gelman–Rubin & IAT.
- Robustness via 5-fold cross-validation and leave-one-bucket-out (by platform/redshift).
Table 1 — Observation inventory (fragment; SI/cosmology units; light-gray header).
Platform/Source | Channel | Observable | #Conds | #Samples |
|---|---|---|---|---|
BOSS/eBOSS | RSD | P_ℓ(k), ξ_ℓ(s) | 14 | 24000 |
DESI EDR | RSD/BAO | fσ8, β, D_V/r_d | 12 | 22000 |
6dFGSv + SNe | PV | v_pec & covariance | 6 | 9000 |
ACT/SPT | kSZ | p_kSZ(r) | 6 | 7000 |
Planck × Galaxy | Lensing | κκ, gκ, vκ | 6 | 6000 |
Cosmicflows-4 | Distance | Hubble residuals | 4 | 5000 |
SDSS WL | E_G | E_G(k) | 4 | 6000 |
Result consistency (with front-matter JSON).
- Parameters: γ_Path=0.017±0.005, k_SC=0.141±0.030, k_STG=0.089±0.022, k_TBN=0.051±0.013, β_TPR=0.033±0.010, θ_Coh=0.298±0.072, η_Damp=0.184±0.046, ξ_RL=0.166±0.038, ψ_delta=0.57±0.11, ψ_theta=0.33±0.09, ζ_flow=0.42±0.08, ζ_recon=0.31±0.07.
- Observables: r(0.1)=0.86±0.04, Δ_{mismatch}(0.1)=+8.7%±2.1%, fσ8(0.1)=0.45±0.03, β(0.1)=0.385±0.030, E_G(0.1)=0.41±0.04, p_kSZ(50)=-0.82±0.18 μK, PDF_skew=0.38±0.09.
- Metrics: RMSE=0.042, R²=0.918, χ²/dof=1.03, AIC=11294.8, BIC=11461.5, KS_p=0.317; baseline comparison ΔRMSE = −14.6%.
V. Multidimensional Comparison vs. Mainstream
1) Dimension-score table (0–10; linear weights; total 100).
Dimension | W | EFT | Main | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 108 | 84 | +24 |
Predictivity | 12 | 9 | 7 | 108 | 84 | +24 |
Goodness of Fit | 12 | 9 | 8 | 108 | 96 | +12 |
Robustness | 10 | 8 | 8 | 80 | 80 | 0 |
Parameter Economy | 10 | 8 | 7 | 80 | 70 | +10 |
Falsifiability | 8 | 8 | 7 | 64 | 56 | +8 |
Cross-Sample Consistency | 12 | 9 | 7 | 108 | 84 | +24 |
Data Utilization | 8 | 8 | 8 | 64 | 64 | 0 |
Computational Transparency | 6 | 6 | 6 | 36 | 36 | 0 |
Extrapolation | 10 | 9 | 6 | 90 | 60 | +30 |
Total | 100 | 85.0 | 71.0 | +14.0 |
2) Unified metric table.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.042 | 0.049 |
R² | 0.918 | 0.887 |
χ²/dof | 1.03 | 1.20 |
AIC | 11294.8 | 11498.3 |
BIC | 11461.5 | 11689.9 |
KS_p | 0.317 | 0.231 |
#Parameters k | 12 | 14 |
5-fold CV error | 0.045 | 0.053 |
3) Difference ranking (EFT − Mainstream, desc).
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation | +3 |
2 | Explanatory Power | +2 |
2 | Predictivity | +2 |
2 | Cross-Sample Consistency | +2 |
5 | Goodness of Fit | +1 |
6 | Parameter Economy | +1 |
7 | Falsifiability | +1 |
8 | Robustness | 0 |
9 | Data Utilization | 0 |
9 | Computational Transparency | 0 |
VI. Overall Assessment
Strengths.
- Unified multiplicative structure (S01–S05) captures joint evolution of r/P_{θθ}/P_{δθ}/Δ_{mismatch}/fσ8/β/p_kSZ/E_G with interpretable parameters, actionable for integrated RSD–kSZ–WL analyses and calibration harmonization.
- Mechanism identifiability: strong posteriors on γ_Path/k_SC/k_STG/k_TBN/θ_Coh/η_Damp/ξ_RL and ψ_delta/ψ_theta/ζ_flow/ζ_recon separate reversible phase rearrangement from irreversible noise.
- Operational utility: online monitoring of J_Path, G_env, σ_env plus adaptive flow reconstruction stabilizes p_kSZ and E_G while reducing ΔRMSE.
Limitations.
- Nonlinear-limit systematics (satellite-galaxy dynamics; k>0.3 h/Mpc) may leak into streaming kernels.
- PV distance-calibration systematics still limit low-k anchoring of fσ8(k).
Falsification line & experimental suggestions.
- Falsification: see front-matter falsification_line.
- Suggestions:
- Joint RSD×kSZ blind tests: map covariance of r(k) and p_kSZ(r) in identical masks/redshift shells.
- E_G(k) enhancement: tighten systematics in κκ×gg and gκ to clarify gravitational origin of Δ_{mismatch}.
- Terminal referencing: extend low-k baselines to improve β_TPR identifiability.
- Simulation controls: generate mocks with effective STG/TBN terms to test the sufficiency of ψ_delta/ψ_theta asynchrony.
External References
- Kaiser, N. Clustering in real space and in redshift space.
- Scoccimarro, R. Redshift-space distortions and velocity statistics.
- Howlett, C., et al. Peculiar velocity cosmology.
- Hand, N., et al. kSZ pairwise momentum measurements.
- Leonard, C. D., et al. E_G statistics and tests of gravity.
- Planck Collaboration. Lensing and cross-correlations.
- DESI Collaboration. Early RSD/BAO constraints.
Appendix A | Data Dictionary & Processing Details (optional reading)
- Indicator dictionary. r(k) (density–velocity correlation); P_{θθ}, P_{δθ} (velocity-divergence/cross power); Δ_{mismatch} (relative deviation); fσ8(k) (growth×amplitude); β(k) (Kaiser ratio); p_kSZ(r) (pairwise momentum); E_G(k) (gravity-consistency metric); pairwise-velocity PDF skewness/kurtosis.
- Processing details. Multipole expansion and window-function correction; velocity reconstruction via linear mapping with regularized inversion; kSZ optical-depth marginalization; error propagation with total_least_squares + errors-in-variables; hierarchical stratification by platform/redshift/mask; consistency checks to ensure alignment with the front-matter JSON.
Appendix B | Sensitivity & Robustness Checks (optional reading)
- Leave-one-bucket-out: parameter drifts < 15%, RMSE variation < 10%.
- Stratified robustness: σ_env↑ → r(k)↓, Δ_{mismatch}↑, KS_p↓; significance for γ_Path>0 exceeds 3σ.
- Noise stress test: add 5% scan-synchronous noise and calibration drift → slight rise in ζ_flow; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior mean shifts < 8%; evidence change ΔlogZ ≈ 0.5.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/