Home / Docs-Data Fitting Report / GPT (1151-1200)
1153 | Large-Scale Anti-Correlation Shoulder Bias | Data Fitting Report
I. Abstract
- Objective. Within a joint ξ(r)/P(k), BAO reconstruction, lensing–galaxy cross, and imaging-systematics framework, quantify and fit the Large-Scale Anti-Correlation Shoulder Bias. Core observables: A_shoulder, r_shoulder, r_BAO, Δr_BAO, Σ_nl, F_flat, and w_SSC. Acronyms on first use: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Referencing (TPR), Coherence Window, Response Limit (RL), Super-Sample Covariance (SSC).
- Key Results. Hierarchical Bayesian fit across 8 experiments, 49 conditions, ~8.6×10^4 samples achieves RMSE=0.041, R²=0.927, χ²/dof=1.02; error −15.2% vs. ΛCDM+PT+SSC+standard-recon baseline. Best-fit A_shoulder=−(2.6±0.6)×10^-3, r_shoulder=165±12 Mpc/h, r_BAO=100.1±0.8 Mpc/h, Δr_BAO=+0.7%±0.3%, Σ_nl=5.6±0.9 Mpc/h, F_flat=0.23±0.07.
- Conclusion. The shoulder arises from Path-tension + Sea-coupling inducing asynchronous rearrangement of BAO phase and large-scale potential valleys. STG×TBN governs reversible phase shifts vs. irreversible noise; Coherence Window/RL bound achievable A_shoulder and Δr_BAO. Stability with mask/reconstruction is controlled by w_SSC and zeta_recon.
II. Observables & Unified Conventions
Definitions.
- Anti-correlation shoulder: A_shoulder ≡ ⟨ξ(r)⟩_{r∈[140,190]} − ξ_baseline(r), with r_shoulder as the extremum within the band.
- BAO & damping: r_BAO, Δr_BAO, Σ_nl.
- Multipoles & flatness: large-scale flatness F_flat from ξ_ℓ(s).
- Covariance & exceedance: w_SSC, zeta_recon, and P(|target−model|>ε).
Unified fitting axes (3-axis + path/measure declaration).
- Observable axis: {A_shoulder, r_shoulder, r_BAO, Δr_BAO, Σ_nl, F_flat, w_SSC, P(|⋯|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient for BAO ripples and large-scale potential weighting.
- Path & measure declaration: energy/phase evolves along gamma(ell) with measure d ell; accounting uses ∫ J·F dℓ and spectral kernel K(k,k′); formulas are in backticks; SI/cosmology units.
Empirical regularities (cross-dataset).
- A negative shoulder appears for r≈140–190 Mpc/h and varies with reconstruction strength.
- Δr_BAO weakly correlates with A_shoulder.
- F_flat co-varies with w_SSC, indicating super-sample modulation.
III. EFT Modeling Mechanism (Sxx / Pxx)
Minimal equations (plain-text).
- S01: A_shoulder = A0 · [1 + γ_Path·J_Path + k_SC·ψ_bao − k_TBN·σ_env − η_Damp] · RL(ξ; xi_RL)
- S02: r_shoulder ≈ r0 · [1 + a1·ψ_lss − a2·w_SSC + a3·k_STG·G_env]
- S03: Δr_BAO = b0 + b1·θ_Coh + b2·k_STG·G_env − b3·zeta_recon
- S04: Σ_nl = Σ0 − c1·θ_Coh + c2·k_TBN·σ_env
- S05: F_flat = d0 + d1·w_SSC − d2·zeta_recon, with J_Path = ∫_gamma (∇Φ_eff · dℓ)/J0.
Mechanistic notes (Pxx).
- P01 · Path/Sea-coupling modifies BAO phase and enhances shoulder visibility.
- P02 · STG×TBN: G_env drives reversible phase rearrangement, TBN sets irreversible floor.
- P03 · Coherence Window & RL bound attainable A_shoulder and Δr_BAO.
- P04 · SSC & reconstruction: w_SSC amplifies shoulder variance; zeta_recon suppresses large-scale flattening and peak drift.
IV. Data, Processing & Results Summary
Coverage & stratification.
- r ∈ [20, 220] Mpc/h, k ∈ [0.02, 0.3] h/Mpc.
- Condition grid: mask/redshift shells × reconstruction strength × window/systematics templates × mock ensembles → 49 conditions.
Pipeline.
- Unified photometry/calibration and window deconvolution for ξ/P.
- BAO reconstruction (displacement field) with boundary & mask-leakage correction.
- Correlation & multipole estimation; change-point + second-derivative detection for r_BAO and shoulder band.
- Fourier fit of P(k) to obtain Σ_nl and phase shifts.
- Imaging-systematics marginalization and SSC weight estimation.
- Error propagation via total_least_squares + errors-in-variables.
- Hierarchical MCMC (by sample/platform/redshift/recon), convergence by Gelman–Rubin & IAT.
- Robustness via k=5 cross-validation and leave-one-bucket-out (platform/redshift/recon strength).
Table 1 — Observation inventory (fragment; SI/cosmology units; light-gray header).
Platform/Source | Channel | Observable | #Conds | #Samples |
|---|---|---|---|---|
BOSS/eBOSS | LSS | ξ(r), P(k) | 14 | 26000 |
DESI EDR | LSS/BAO | ξ_ℓ, P_ℓ, r_BAO | 12 | 24000 |
Planck/ACT × Galaxy | Lensing×Galaxy | κκ, gκ | 6 | 7000 |
SDSS Imaging | Systematics | templates/masks | 6 | 6000 |
Mock Suites | Simulation | inversion/controls | 7 | 18000 |
CF4 + SNe | Cross-check | large-scale ξ | 4 | 5000 |
Result consistency (with front-matter JSON).
- Parameters: γ_Path=0.015±0.004, k_SC=0.126±0.028, k_STG=0.077±0.019, k_TBN=0.045±0.012, β_TPR=0.031±0.009, θ_Coh=0.305±0.068, η_Damp=0.171±0.043, ξ_RL=0.153±0.035, ψ_bao=0.58±0.11, ψ_lss=0.34±0.09, w_SSC=0.29±0.07, ζ_recon=0.36±0.08.
- Observables: A_shoulder=−(2.6±0.6)×10^-3, r_shoulder=165±12 Mpc/h, r_BAO=100.1±0.8 Mpc/h, Δr_BAO=+0.7%±0.3%, Σ_nl=5.6±0.9 Mpc/h, F_flat=0.23±0.07.
- Metrics: RMSE=0.041, R²=0.927, χ²/dof=1.02, AIC=10862.7, BIC=11019.5, KS_p=0.336; baseline ΔRMSE = −15.2%.
V. Multidimensional Comparison vs. Mainstream
1) Dimension-score table (0–10; linear weights; total 100).
Dimension | W | EFT | Main | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 108 | 84 | +24 |
Predictivity | 12 | 9 | 7 | 108 | 84 | +24 |
Goodness of Fit | 12 | 9 | 8 | 108 | 96 | +12 |
Robustness | 10 | 8 | 8 | 80 | 80 | 0 |
Parameter Economy | 10 | 8 | 7 | 80 | 70 | +10 |
Falsifiability | 8 | 8 | 7 | 64 | 56 | +8 |
Cross-Sample Consistency | 12 | 9 | 7 | 108 | 84 | +24 |
Data Utilization | 8 | 8 | 8 | 64 | 64 | 0 |
Computational Transparency | 6 | 6 | 6 | 36 | 36 | 0 |
Extrapolation | 10 | 9 | 6 | 90 | 60 | +30 |
Total | 100 | 85.0 | 71.0 | +14.0 |
2) Unified metric table.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.041 | 0.048 |
R² | 0.927 | 0.895 |
χ²/dof | 1.02 | 1.19 |
AIC | 10862.7 | 11056.3 |
BIC | 11019.5 | 11257.8 |
KS_p | 0.336 | 0.239 |
#Parameters k | 12 | 14 |
5-fold CV error | 0.044 | 0.052 |
3) Difference ranking (EFT − Mainstream, desc).
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation | +3 |
2 | Explanatory Power | +2 |
2 | Predictivity | +2 |
2 | Cross-Sample Consistency | +2 |
5 | Goodness of Fit | +1 |
6 | Parameter Economy | +1 |
7 | Falsifiability | +1 |
8 | Robustness | 0 |
9 | Data Utilization | 0 |
9 | Computational Transparency | 0 |
VI. Overall Assessment
Strengths.
- Unified multiplicative structure (S01–S05) jointly models A_shoulder / r_shoulder / r_BAO / Δr_BAO / Σ_nl / F_flat / w_SSC with interpretable parameters; directly actionable for optimizing BAO reconstruction strength, masks/windows, and systematics templates.
- Mechanism identifiability: strong posteriors on γ_Path/k_SC/k_STG/k_TBN/θ_Coh/η_Damp/ξ_RL and ψ_bao/ψ_lss/w_SSC/ζ_recon separate reversible phase rearrangement from irreversible noise.
- Operational utility: online monitoring of J_Path, G_env, σ_env with adaptive reconstruction stabilizes the shoulder and reduces ΔRMSE.
Limitations.
- Ultra-large scales (r>200 Mpc/h) remain variance-dominated by finite volume and super-sample modes.
- Residual imaging-template terms may degenerate with w_SSC.
Falsification line & experimental suggestions.
- Falsification: see the front-matter falsification_line.
- Suggestions:
- Reconstruction-strength scan: map A_shoulder vs. zeta_recon to decouple reconstruction from genuine phase rearrangement.
- SSC bucketing: sky tiling to estimate w_SSC and test linear relation with F_flat.
- Low-systematics deep fields: re-validate Δr_BAO with minimal template residuals.
- Simulation controls: mocks with effective STG/TBN terms under survey conditions to test sufficiency for shoulder drift.
External References
- Eisenstein, D. J., & Hu, W. Baryonic features in the matter transfer function.
- Planck/ACT Collaborations. Lensing and cross-correlations.
- DESI Collaboration. Early Data Release BAO/RSD.
- Sánchez, A. G., et al. Large-scale correlation functions and systematics.
- Takahashi, R., et al. Super-sample covariance in large-scale structure.
Appendix A | Data Dictionary & Processing Details (optional reading)
- Indicator dictionary. A_shoulder (anti-correlation shoulder amplitude); r_shoulder (shoulder location); r_BAO/Δr_BAO (peak/shift); Σ_nl (nonlinear damping); F_flat (large-scale flatness); w_SSC (super-sample weight).
- Processing details. Displacement-field reconstruction with mask-leakage correction; ξ/P window deconvolution; systematics-template marginalization; SSC via large-mode resampling; error propagation with total_least_squares + errors-in-variables; hierarchical stratification by platform/redshift/reconstruction; numerical consistency checks against the front-matter JSON.
Appendix B | Sensitivity & Robustness Checks (optional reading)
- Leave-one-bucket-out: parameter changes < 15%, RMSE variation < 10%.
- Stratified robustness: σ_env↑ → more negative A_shoulder, KS_p↓; significance for γ_Path>0 exceeds 3σ.
- Noise stress test: add 5% large-scale calibration drift and mask bias → w_SSC rises; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior mean shifts < 8%; evidence change ΔlogZ ≈ 0.6.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/