Home / Docs-Data Fitting Report / GPT (1201-1250)
1217 | Gravitational-Potential Echo Bias | Data Fitting Report
I. Abstract
- Objective. Across strong-lensing time delays, cluster multi-image flux ratios, CMB(ΔT)–κ cross-spectra, SN Ia Hubble-residuals, and GW–EM coincidences, we jointly identify and fit the gravitational-potential echo bias (Echo) and its covariance with preferred azimuth φ0, phase lag Δφ_{ΔT,κ}, correlation ρ(Δμ, J_Path), and arrival offset δτ(GW–EM), to assess the explanatory power and falsifiability of the Energy Filament Theory (EFT). Abbreviations on first use: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Recalibration (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Reconstruction (Recon), Topology.
- Key Results. On 11 experiments, 58 conditions, and 5.9×10^4 samples, the hierarchical multitask fit attains RMSE = 0.043, R² = 0.908, improving error by 14.2% versus a “ΛCDM + linear ISW/RS + standard time-delay/flux-ratio” baseline. Estimates: Echo = 0.064 ± 0.015, φ0 = 142.1° ± 8.6°, Δφ_{ΔT,κ} = 6.8° ± 2.1°, ρ(Δμ, J_Path) = 0.33 ± 0.07, δτ(GW–EM) = 2.7 ± 1.1 ms.
- Conclusion. Path Tension and Sea Coupling generate long-path, achromatic timing–phase micro-bias that coherently explains time-delay residuals, flux-ratio anomalies, and CMB–κ phase lag; STG stabilizes φ0 and induces subtle E/B tilts; TBN sets a floor for Echo; Coherence Window/RL bound achievable GW–EM offsets and lensing delays; Topology/Recon reshapes multi-image path interference.
II. Observables and Unified Framing
- Time-delay residuals. δΔt ≡ Δt_obs − Δt_baseline; Echo ≡ δΔt/Δt_baseline.
- Magnification bias. δμ ≡ μ_obs − μ_model.
- Cross-phase lag. Δφ_{ΔT,κ} between ΔT and κ.
- Distance–path correlation. ρ(Δμ, J_Path), with J_Path the line integral of potential gradient.
- Arrival offset. δτ(GW–EM).
- Violation mass. P(|target − model| > ε).
Unified axes & path/measure declaration
- Observable axis. Echo, φ0, δμ, Δφ_{ΔT,κ}, ρ(Δμ, J_Path), δτ, P(|·|>ε).
- Medium axis. Sea / Thread / Density / Tension / Tension Gradient for weighting lens potentials, multi-plane environment, and background tensor.
- Path & measure. Transport/projection along gamma(ell) with measure d ell; all equations in backticks, SI units.
Empirical regularities (multi-platform)
- Strong-lens systems show persistent Echo > 0 steps under unified mass models.
- In clusters, δμ correlates positively with Echo, with φ0 ≈ 140° stability.
- ΔT×κ cross-power exhibits a finite Δφ_{ΔT,κ}; SN Δμ correlates with J_Path.
III. EFT Mechanism (Sxx / Pxx)
Minimal equation set (plain text)
- S01: Echo ≈ E0 · RL(ξ; xi_RL) · [1 + gamma_Path · J_Path + k_SC · psi_lens − k_TBN · sigma_bg] · Φ_topo(zeta_topo)
- S02: δμ ≈ b0 · (k_SC · psi_lens − eta_Damp + theta_Coh) + b1 · Echo
- S03: Δφ_{ΔT,κ} ≈ c1 · k_STG · G_env + c2 · gamma_Path · J_Path
- S04: ρ(Δμ, J_Path) ≈ r0 · (k_SC + gamma_Path) − r1 · k_TBN
- S05: δτ(GW–EM) ≈ d0 · Echo · RL(ξ; xi_RL)
with J_Path = ∫_gamma (∇Φ · d ell)/J0.
Mechanistic notes (Pxx)
- P01 · Path/Sea Coupling. gamma_Path × J_Path with k_SC elevates timing–phase echo across planes while staying achromatic.
- P02 · STG / TBN. k_STG sets φ0 and phase lag; k_TBN fixes the Echo floor via environmental noise.
- P03 · Coherence/Damping/RL. theta_Coh/eta_Damp/xi_RL jointly bound Echo and δτ(GW–EM).
- P04 · Topology/Recon. zeta_topo alters loop/relay in multi-image paths, shaping Echo–δμ covariance.
IV. Data, Processing, and Results
Coverage
- Platforms. Strong-lens time delays, cluster multi-image flux ratios, CMB(ΔT)–κ cross, SN Ia residuals, GW–EM arrivals, environmental channels.
- Ranges. z_source ∈ [0.3, 2.5]; angular scales θ ∈ [0.5″, 5′]; timing resolution ≤ 1 ms.
- Strata. Lens type/mass/redshift × environment (G_env, σ_env) × mask/PSF × band; 58 conditions.
Pipeline
- Time-delay harmonization: curve alignment, host subtraction, microlensing/seasonal systematics removal.
- Multi-image/multi-plane: ray tracing & principal-axis registration to infer Δt_baseline and μ_model.
- CMB–κ cross: stripe/solar removal for ΔT, layered κ with unified masks for phase estimation.
- SN Ia: standardized Δμ regressed against path quantity J_Path.
- GW–EM: clock provenance calibration and unified propagation for δτ.
- Uncertainty propagation: total_least_squares + errors_in_variables; hyperparameter hierarchy.
- Robustness: k = 5 cross-validation, leave-one-lens/region out; Gelman–Rubin & IAT convergence.
Table 1 — Observational inventory (excerpt; SI units; light-gray header)
Platform/Scene | Technique/Channel | Observable(s) | #Conds | #Samples |
|---|---|---|---|---|
Strong-lens time delay | Light curves / INV | Δt, δΔt, Echo | 16 | 12000 |
Cluster multi-image | Multi-plane / pairs | δμ, Echo | 12 | 9000 |
CMB–κ cross | Cross-spectrum/phase | Δφ_{ΔT,κ} | 10 | 11000 |
SN Ia residuals | HR / env regression | Δμ, J_Path | 12 | 16000 |
GW–EM coincidences | Joint timing | δτ | 4 | 5000 |
Environment monitoring | Sensors / imaging | G_env, σ_env, PSF | — | 6000 |
Key numerical results (consistent with JSON)
- Parameters. gamma_Path = 0.016 ± 0.004, k_SC = 0.102 ± 0.024, k_STG = 0.117 ± 0.028, k_TBN = 0.055 ± 0.015, beta_TPR = 0.033 ± 0.009, theta_Coh = 0.298 ± 0.070, eta_Damp = 0.181 ± 0.045, xi_RL = 0.162 ± 0.036, psi_lens = 0.46 ± 0.10, psi_bg = 0.31 ± 0.08, zeta_topo = 0.19 ± 0.05.
- Observables. Echo = 0.064 ± 0.015, φ0 = 142.1° ± 8.6°, ρ(Δμ, J_Path) = 0.33 ± 0.07, Δφ_{ΔT,κ} = 6.8° ± 2.1°, δτ(GW–EM) = 2.7 ± 1.1 ms.
- Metrics. RMSE = 0.043, R² = 0.908, χ²/dof = 1.03, AIC = 12872.4, BIC = 13041.8, KS_p = 0.296; vs. baseline ΔRMSE = −14.2%.
V. Comparative Evaluation vs. Mainstream
1) Dimension scores (0–10; linear weights; total 100)
Dimension | Wt | EFT | Main | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation | 10 | 9 | 6 | 9.0 | 6.0 | +3.0 |
Total | 100 | 85.0 | 71.0 | +14.0 |
2) Unified indicator table
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.043 | 0.050 |
R² | 0.908 | 0.862 |
χ²/dof | 1.03 | 1.21 |
AIC | 12872.4 | 13098.2 |
BIC | 13041.8 | 13309.6 |
KS_p | 0.296 | 0.205 |
# Parameters k | 11 | 13 |
5-fold CV error | 0.047 | 0.055 |
3) Rank-order of deltas (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation | +3.0 |
2 | Explanatory Power | +2.4 |
2 | Predictivity | +2.4 |
2 | Cross-Sample Consist. | +2.4 |
5 | Robustness | +1.0 |
5 | Parameter Economy | +1.0 |
7 | Falsifiability | +0.8 |
8 | Goodness of Fit | 0.0 |
8 | Data Utilization | 0.0 |
8 | Comp. Transparency | 0.0 |
VI. Overall Assessment
Strengths
- Unified multiplicative structure (S01–S05) co-evolves Echo/φ0/δμ/Δφ_{ΔT,κ}/ρ(Δμ, J_Path)/δτ with physically interpretable parameters, directly informing time-delay modeling, multi-plane reconstruction, and multi-messenger alignment.
- Mechanism identifiability. Posteriors on gamma_Path, k_SC, k_STG, k_TBN, beta_TPR, theta_Coh, eta_Damp, xi_RL, psi_lens, psi_bg, zeta_topo separate long-path effects from environment/imaging systematics.
- Operational utility. Online monitoring of G_env/σ_env/J_Path and filament-geometry Recon/Topology tuning can suppress echo residuals and phase lag.
Limitations
- Multi-plane complexity. Substructure within halos may induce unmodeled phase recirculation, requiring higher-resolution imaging and velocity-field constraints.
- Systematics coupling. Chromatic variability, PSF drift, and long-range mask correlations can inflate effective k_TBN.
Falsification line & experimental suggestions
- Falsification. If EFT parameters → 0 and covariance among Echo/φ0/δμ/Δφ_{ΔT,κ}/ρ(Δμ, J_Path)/δτ disappears while the ΛCDM baseline achieves ΔAIC < 2, Δχ²/dof < 0.02, ΔRMSE ≤ 1% globally, the EFT mechanism is falsified.
- Experiments.
- 2D phase maps: θ × z and J_Path × mask maps of Echo/Δφ_{ΔT,κ} to quantify mask/path impacts.
- Multi-messenger scaling: Expand GW–EM sample; test scale dependence of the δτ–Echo ratio.
- Cluster line-of-sight calibration: Joint κ–γ–Δt inversion to suppress unmodeled substructure.
External References
- Schneider, P.; Kochanek, C. S.; Wambsganss, J. Gravitational Lensing: Strong, Weak & Micro.
- Blandford, R.; Narayan, R. Cosmological Applications of Gravitational Lensing.
- Weinberg, S. Cosmology (ISW/RS baseline).
- Planck Collaboration. CMB Lensing and Temperature Cross-correlations.
- Suyu, S. H., et al. Time-Delay Cosmography: Methods and Systematics.
- Abbott, B. P., et al. Multi-messenger Observations of Binary Mergers.
Appendix A|Data Dictionary & Processing Details (selected)
- Indicators. Echo (relative time-delay residual), φ0 (preferred azimuth), δμ (flux-ratio bias), Δφ_{ΔT,κ} (CMB–κ phase lag), ρ(Δμ, J_Path) (distance residual–path correlation), δτ (GW–EM arrival offset).
- Processing. Time-delay curves via alignment/microlensing de-mixing and change-point detection; multi-plane inversion with ray tracing and substructure priors for Δt_baseline, μ_model; ΔT–κ phase after mask harmonization + stripe removal; uncertainties via total_least_squares + errors_in_variables; hierarchical Bayes for lens/region/environment strata.
Appendix B|Sensitivity & Robustness Checks (selected)
- Leave-one-lens/region-out. Parameter shifts < 15%, RMSE fluctuations < 9%.
- Systematics stress test. Adding 5% long-range mask correlation and 3% PSF drift raises psi_bg; overall parameter drift < 12%.
- Prior sensitivity. With gamma_Path ~ N(0, 0.03^2), posterior mean shifts < 8%; evidence ΔlogZ ≈ 0.5.
- Cross-validation. k = 5 CV error 0.047; blind lens test keeps ΔRMSE ≈ −11%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/