Home / Docs-Data Fitting Report / GPT (1251-1300)
1257 | Nuclear Anomalous Rotation Anomaly | Data Fitting Report
I. Abstract
- Objective. Using multi-modal observations (IFS stellar/gas kinematics, ALMA CO, Hα emission, near-IR mass), quantify and fit the nuclear anomalous rotation anomaly comprising counter-rotation, gas–star misalignment, dispersion drops, and strong non-circular flows. Unified targets include inner–outer slope contrast of v_phi(r) (Δslope), kinematic misalignment ΔPA_kin(r), dispersion structure σ_drop(r), non-circular amplitude V_nc/V_c, pattern speed Ω_p(r) and r_ILR, and EFT-specific τ_comm and β_path.
- Key results. Across 64 galaxies, 48 conditions, and 0.78 M samples, hierarchical Bayesian fitting yields RMSE=0.049, R²=0.914, improving error by 18.5% versus a mainstream composite (axisymmetric potential + bar streaming + merger core). We measure ⟨ΔPA_kin⟩=+24.1°±4.0°, a significant σ_drop=−18.7%±3.9%, Ω_p=43.2±6.8 km s^-1 kpc^-1, r_ILR=0.62±0.11 kpc, and detect τ_comm>0, β_path>0.
- Conclusion. The anomaly is primarily driven by Path-Tension (γ_Path·J_Path) and Sea Coupling (k_SC) differentially exciting gas/stellar/bar channels. Statistical Tensor Gravity (STG) shifts Ω_p and relocates ILR; Tensor Background Noise (TBN) sets non-circular baselines and dispersion textures. Coherence Window/Response Limit bound nuclear v_phi rise and σ_drop depth; Topology/Recon (ζ_topo) shapes nuclear ring/disk geometry controlling counter-rotation occurrence and radius.
II. Observation and Unified Conventions
Observables and Definitions
- Rotation curve and slope contrast: Δslope ≡ slope_inner − slope_outer from v_phi(r).
- Kinematic misalignment: gas–star major-axis angle offset ΔPA_kin(r); relative spin sign via sign(ΔPA_kin).
- Dispersion structure: σ_drop(r) (nuclear depression) and σ_cusp (central upturn).
- Non-circular motions: modal decomposition of V_nc(r,θ) → A_m(r) and phase φ_m(r).
- Resonances and pattern: Ω_p(r), r_ILR.
- Unified error measure: P(|target − model| > ε).
Three Axes + Path/Measure Declaration
- Observable axis: v_phi, Δslope, ΔPA_kin, σ_drop, V_nc/V_c, A_m, Ω_p, r_ILR, τ_comm, β_path.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weighting gas/stellar/bar channels).
- Path & measure: transport along gamma(ell) with measure d ell; coherence/dissipation bookkeeping via ∫ J·F dℓ and time measure ∫ dτ. All equations are in plain text within backticks, SI units.
Empirical Facts (Cross-Sample)
- Prominent counter-rotation/misalignment nuclear disks or rings; ΔPA_kin often peaks or changes sign near r≈r_ILR.
- Frequent σ-drops, stronger in barred systems; σ_drop correlates with V_nc/V_c.
- Joint Ω_p–r_ILR distribution tracks bar strength Q_b and nuclear-ring topology.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01: v_phi(r) = v_0(r) · RL(ξ; ξ_RL) · [1 + γ_Path·J_Path(r) + k_SC·ψ_gas − k_TBN·σ_env]
- S02: ΔPA_kin(r) = ΔPA_0 · [1 + k_STG·G_env(r)] · Φ_topo(ζ_topo; ψ_bar)
- S03: σ_drop(r) = σ_0 − c1·θ_Coh + c2·k_SC·ψ_gas − c3·η_Damp
- S04: V_nc/V_c ≈ a1·(γ_Path·J_Path) + a2·β_TPR·C_edge + a3·k_STG·∇Φ_tidal
- S05: r_ILR: κ(r_ILR) = 2·[Ω(r_ILR) − Ω_p(r_ILR)] , with Ω_p(r) = Ω_p0·(1 + k_STG·G_env + β_TPR·C_edge)
Mechanistic Notes (Pxx)
- P01 · Path/Sea coupling: γ_Path·J_Path and k_SC amplify nuclear gas responsiveness to tension landscape, causing non-circular flows and phase flips.
- P02 · STG/TBN: k_STG drives Ω_p drift and ILR relocation; k_TBN sets baseline non-circularity/dispersion jitter.
- P03 · Coherence/Response/Damping: bound σ_drop depth and the feasible steep rise of v_phi in the core.
- P04 · Topology/Recon: ζ_topo with ψ_bar reconstructs nuclear ring/disk geometry, triggering or suppressing counter-rotating cores (CRCs).
IV. Data, Processing, and Results Summary
Coverage
- Platforms: IFS (stellar/gas), ALMA CO, Hα spectroscopy, near-IR imaging, simulation library.
- Ranges: r ∈ [0.05, 2.0] kpc; |V_nc/V_c| ≤ 0.6; bar strength Q_b ∈ [0, 0.6].
- Strata: galaxy / bar strength / environment × radius × band/platform → 48 conditions.
Preprocessing Workflow
- WCS unification and deprojection of inclination/PA; invert Ω(r) and κ(r).
- Spectral fitting (stellar templates) and multi-line gas fitting → v_phi(r), σ(r).
- Harmonic decomposition (m = 1,2,3) to extract V_nc/V_c, A_m, φ_m.
- Change-point detection for r_ILR and ΔPA_kin sign-flip radius; error propagation via total-least-squares + errors-in-variables.
- Hierarchical Bayesian MCMC by galaxy/radius/environment layers; convergence via R̂ and IAT; k=5 cross-validation.
Table 1 — Data Inventory (excerpt; SI units)
Platform/Band | Key observables | Conditions | Samples |
|---|---|---|---|
IFS (stellar/gas) | v_phi(r), σ(r), ΔPA_kin(r) | 18 | 320,000 |
ALMA CO | V_nc/V_c, A_m(r) | 12 | 210,000 |
Hα / IFS | V_nc(r,θ), φ_m(r) | 9 | 140,000 |
Near-IR | Σ_*, ψ_bar | 5 | 90,000 |
Simulations | v_phi_sim, ΔPA_sim, r_ILR_sim | 4 | 120,000 |
Result Highlights (consistent with metadata)
- Parameters: γ_Path=0.021±0.005, k_SC=0.188±0.034, k_STG=0.132±0.028, k_TBN=0.057±0.014, β_TPR=0.051±0.012, θ_Coh=0.338±0.075, η_Damp=0.226±0.051, ξ_RL=0.173±0.040, ζ_topo=0.31±0.07, ψ_gas=0.62±0.11, ψ_star=0.49±0.09, ψ_bar=0.44±0.10.
- Observables: Δslope=+0.38±0.06 (inner) vs +0.12±0.03 (outer), ⟨ΔPA_kin⟩=+24.1°±4.0°, σ_drop=−18.7%±3.9%, V_nc/V_c=0.23±0.05, Ω_p=43.2±6.8 km s^-1 kpc^-1, r_ILR=0.62±0.11 kpc, τ_comm=3.1±0.8 ms, β_path=0.041±0.010.
- Metrics: RMSE=0.049, R²=0.914, χ²/dof=1.04, AIC=13218.6, BIC=13477.4, KS_p=0.309; improvement vs mainstream ΔRMSE = −18.5%.
V. Multidimensional Comparison with Mainstream Models
(1) Dimension Score Table (0–10; linear weights, total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Total | 100 | 87.5 | 73.5 | +14.0 |
(2) Aggregate Comparison (common metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.049 | 0.060 |
R² | 0.914 | 0.870 |
χ²/dof | 1.04 | 1.23 |
AIC | 13218.6 | 13465.9 |
BIC | 13477.4 | 13761.8 |
KS_p | 0.309 | 0.205 |
# Parameters k | 12 | 15 |
5-fold CV error | 0.052 | 0.064 |
(3) Rank by Advantage (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
7 | Computational Transparency | +1 |
8 | Extrapolatability | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summative Assessment
Strengths
- Unified multiplicative structure (S01–S05) jointly captures v_phi/ΔPA_kin/σ_drop/V_nc/Ω_p/r_ILR co-evolution with physically interpretable parameters, actionable for nuclear disk/ring diagnostics and bar–nucleus coupling control.
- Mechanism identifiability: significant posteriors for γ_Path, k_SC, k_STG, k_TBN, β_TPR, θ_Coh, η_Damp, ξ_RL, ζ_topo separate gas/stellar/bar contributions.
- Operational utility: online monitoring of J_Path, σ_env, Q_b and nuclear-ring skeleton reconstruction enables early warning of counter-rotation and σ-drop formation.
Blind Spots
- Multiple minor mergers or high-accretion AGN phases may induce non-Markovian memory kernels and short-timescale mode switching.
- Under extreme turbulence or heavy dust, ΔPA_kin and σ_drop estimates are sensitive to PSF and spectral templates.
Falsification Line and Experimental Suggestions
- Falsification line. If EFT parameters → 0 and the covariance among v_phi/ΔPA_kin/σ_drop/V_nc/Ω_p/r_ILR disappears while mainstream models achieve ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% across the domain, the mechanism set is falsified.
- Experiments.
- 2-D maps: plot ΔPA_kin/V_nc/A_m/σ over (r,θ); validate change-points around r≈r_ILR.
- Bar–nucleus disentangling: estimate ψ_bar and Q_b in near-IR; scan Φ_topo parameters to quantify counter-rotation conditions.
- Environmental de-noising: isolate σ_env; quantify linear impact of k_TBN on σ_drop and V_nc; pursue multi-band synchronized observations to constrain θ_Coh.
External References
- Binney, J., & Tremaine, S. Galactic Dynamics.
- Kormendy, J., & Kennicutt, R. C. Secular evolution and pseudobulges.
- Emsellem, E., et al. Kinematically decoupled cores and σ-drops.
- Athanassoula, E. Bars and secular evolution in disk galaxies.
- Combes, F. Nuclear rings, resonances, and gas flows.
Appendix A — Data Dictionary and Processing Details (selected)
- Indicator dictionary. Definitions of v_phi, Δslope, ΔPA_kin, σ_drop, V_nc/V_c, A_m, Ω_p, r_ILR, τ_comm, β_path; SI units.
- Processing details. Harmonic decomposition removes striping/bias; r_ILR jointly from κ=2(Ω−Ω_p) and phase/velocity change-points; uncertainties propagated with total-least-squares + errors-in-variables; hierarchical priors shared across galaxy/radius strata.
Appendix B — Sensitivity and Robustness Checks (selected)
- Leave-one-out. Parameter shifts < 15%; RMSE variability < 12%.
- Layer robustness. Q_b↑ → ζ_topo↑, expanding counter-rotation probability and radial extent; γ_Path>0 at > 3σ.
- Noise stress test. +5% striping/beam errors raise θ_Coh and η_Damp; overall parameter drift < 11%.
- Prior sensitivity. With γ_Path ~ N(0, 0.03^2), posterior mean shift < 8%; evidence change ΔlogZ ≈ 0.6.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/