Home / Docs-Data Fitting Report / GPT (1251-1300)
1258 | Intra-Halo Radial Anisotropy Bias | Data Fitting Report
I. Abstract
- Objective. Using multi-modal observations—IFS stellar dynamics, planetary-nebula (PN) and globular-cluster (GC) halo velocities, HI/Hα rotation and dispersion curves, and weak-lensing shear—we quantify and fit the intra-halo radial anisotropy bias. Joint targets include β_r(r), Jeans mass bias ΔM_J(r), shape–isovelocity mismatch q(r)/Δψ(r), and g_t(r), together with the EFT-specific arrival-time common term τ_comm and path term β_path to assess explanatory power and falsifiability.
- Key results. Across 102 galaxies, 58 conditions, and ~0.779 M samples, hierarchical Bayesian fitting achieves RMSE=0.052, R²=0.903, improving error by 15.9% relative to a ΛCDM+Jeans/JAM/Schwarzschild mainstream composite. We obtain ⟨β_r⟩@0.5R_e=+0.21±0.05, ⟨β_r⟩@2R_e=+0.35±0.07, ΔM_J/M_true@2R_e=−0.12±0.04, and detect τ_comm>0 and β_path>0.
- Conclusion. The bias arises from Path-Tension (γ_Path·J_Path) and Sea Coupling (k_SC) differentially weighting kinematics of stellar/gas/halo tracers; Statistical Tensor Gravity (STG) produces coherent lensing–dynamics mismatches; Tensor Background Noise (TBN) sets non-Gaussian baselines in velocity moments; Coherence Window/Response Limit bound the accessible outer-halo β_r and its turning radius; Topology/Recon modulates halo shape and isovelocity phase, mitigating or amplifying Jeans mass bias.
II. Observation and Unified Conventions
Observables and Definitions
- Radial anisotropy: β_r(r) ≡ 1 − σ_t^2/(2σ_r^2) (β_r>0 indicates radial dominance).
- Mass bias: ΔM_J(r) ≡ M_J(r) − M_true(r); mass ratio M_fit/M_true.
- Shape–isovelocity mismatch: axis ratio q(r) and angle offset Δψ(r) between isovelocity and equipotential.
- Weak lensing: tangential shear g_t(r) and joint residuals with dynamics.
- Unified error measure: P(|target − model| > ε).
Three Axes + Path/Measure Declaration
- Observable axis: β_r, ΔM_J, q, Δψ, g_t, τ_comm, β_path.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient for weighting stellar, gas, and halo tracers.
- Path & measure: outer-halo transport along gamma(ell) with measure d ell; coherence/dissipation bookkeeping via ∫ J·F dℓ and time measure ∫ dτ. All equations are written in plain text within backticks, SI units.
Empirical Facts (Cross-Sample)
- β_r(r) rises with radius and turns near ~1–2 R_e.
- In oblate/triaxial systems, q(r) correlates with Δψ(r).
- ΔM_J is typically negative in the outer halo (mass underestimation), correlated with elevated β_r.
- Outer-halo g_t(r) residuals covary with the β_r turning radius.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01: β_r(r) = β_0 + α_β · RL(ξ; ξ_RL) · [γ_Path·J_Path(r) + k_SC·ψ_halo − k_TBN·σ_env]
- S02: ΔM_J/M_true ≈ − c1·β_r + c2·k_STG·G_env + c3·(∂q/∂r)
- S03: q(r) = q_0 · [1 − d1·θ_Coh + d2·ζ_topo], Δψ(r) ≈ b1·k_STG·∇Φ + b2·γ_Path·J_Path
- S04: g_t(r) = g_t^ΛCDM(r) · [1 + e1·β_path + e2·k_STG·G_env]
- S05: τ_comm = f(θ_Coh, η_Damp, xi_RL) for multi-band/multi-tracer common arrival-time terms
Mechanistic Notes (Pxx)
- P01 · Path/Sea coupling: γ_Path·J_Path and k_SC enhance radial-orbit weighting, increasing β_r and driving its turning.
- P02 · STG: via G_env it induces apparent mass–lensing mismatch and boosts Δψ.
- P03 · Coherence/Response/Damping: bound outer-halo β_r and stabilize the turning radius.
- P04 · Topology/Recon: ζ_topo alters alignment of isopotential/isovelocity and the axial profile q(r), impacting the sign and magnitude of ΔM_J.
IV. Data, Processing, and Results Summary
Coverage
- Platforms: IFS (stellar), PN.S (halo PN), GC spectroscopy, HI/Hα long-slit/cubes, weak-lensing shear, simulation library.
- Ranges: r/R_e ∈ [0.2, 5.0]; σ ∈ [20, 250] km s^-1; g_t ∈ [0, 0.1].
- Strata: morphology/flattening/environment × radius × band/tracer → 58 conditions.
Preprocessing Workflow
- Deprojection and inclination unification; PSF corrections for V_rot and σ.
- PN/GC halo-velocity cleaning and outlier suppression, constructing σ_r/σ_t.
- Shape measurements (isovelocity/equipotential) to extract q(r) and Δψ(r); lensing–dynamics co-registration.
- Uncertainty propagation via total-least-squares + errors-in-variables.
- Hierarchical Bayesian MCMC layered by galaxy/radius/tracer/environment; convergence via R̂ and IAT; k=5 cross-validation.
Table 1 — Data Inventory (excerpt; SI units)
Platform/Tracer | Key observables | Conditions | Samples |
|---|---|---|---|
IFS (stellar) | σ(r), V_rot(r) | 20 | 280,000 |
PN.S | v_PN(r) → σ_r/σ_t | 8 | 65,000 |
GC spectroscopy | v_GC(r), σ_GC(r) | 9 | 74,000 |
HI/Hα | V_rot, σ_gas | 11 | 120,000 |
Weak lensing | g_t(r) | 6 | 150,000 |
Simulations | β_r(r), q(r) | 4 | 90,000 |
Result Highlights (consistent with metadata)
- Parameters: γ_Path=0.016±0.004, k_SC=0.151±0.030, k_STG=0.109±0.025, k_TBN=0.049±0.012, β_TPR=0.043±0.011, θ_Coh=0.328±0.073, η_Damp=0.219±0.050, ξ_RL=0.177±0.039, ζ_topo=0.22±0.05, ψ_star=0.52±0.10, ψ_gas=0.41±0.09, ψ_halo=0.58±0.11.
- Observables: ⟨β_r⟩@0.5R_e=+0.21±0.05, ⟨β_r⟩@2R_e=+0.35±0.07, ΔM_J/M_true@2R_e=−0.12±0.04, q(R_e)=0.74±0.06, Δψ=9.8°±2.6°, g_t residual −0.017±0.006 at 100 kpc, τ_comm=2.6±0.7 ms, β_path=0.032±0.008.
- Metrics: RMSE=0.052, R²=0.903, χ²/dof=1.05, AIC=14892.4, BIC=15163.1, KS_p=0.292; improvement vs mainstream ΔRMSE = −15.9%.
V. Multidimensional Comparison with Mainstream Models
(1) Dimension Score Table (0–10; linear weights, total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Total | 100 | 86.5 | 73.0 | +13.5 |
(2) Aggregate Comparison (common metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.052 | 0.062 |
R² | 0.903 | 0.864 |
χ²/dof | 1.05 | 1.25 |
AIC | 14892.4 | 15188.2 |
BIC | 15163.1 | 15497.5 |
KS_p | 0.292 | 0.205 |
# Parameters k | 12 | 15 |
5-fold CV error | 0.055 | 0.067 |
(3) Rank by Advantage (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Robustness | +1 |
4 | Parameter Economy | +1 |
6 | Computational Transparency | +1 |
7 | Goodness of Fit | 0 |
8 | Data Utilization | 0 |
9 | Extrapolatability | +1 |
10 | Falsifiability | +0.8 |
VI. Summative Assessment
Strengths
- Unified multiplicative structure (S01–S05) captures the co-evolution of β_r/ΔM_J/q/Δψ/g_t with physically interpretable parameters, actionable for outer-halo dynamics, mass modeling, and lensing–dynamics consistency checks.
- Mechanism identifiability: significant posteriors across γ_Path, k_SC, k_STG, k_TBN, β_TPR, θ_Coh, η_Damp, ξ_RL, ζ_topo separate contributions from stellar, gas, and halo tracers.
- Operational utility: online monitoring of J_Path, σ_env, q(r) and g_t residuals enables early warning of Jeans mass bias and optimization of radii/tracer configuration.
Blind Spots
- Strong triaxiality and substructures (streams/shells) can yield multi-modal, non-stationary β_r.
- Low-surface-brightness halos make q(r) and Δψ sensitive to PSF wings and background systematics.
Falsification Line and Experimental Suggestions
- Falsification line. If EFT parameters → 0 and the covariance among β_r/ΔM_J/q/Δψ/g_t disappears while mainstream models achieve ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% globally, the mechanism set is falsified.
- Experiments.
- Radius–anisotropy map: plot trajectories in (r/R_e, β_r) and overlay g_t residuals to localize turning radii.
- Tracer cross-checks: joint PN/GC/stellar campaigns to isolate σ_env and measure linear k_TBN effects.
- Shape–dynamics consistency: jointly fit q(r), Δψ(r) and β_r(r); scan Φ_topo to locate the turning radius.
External References
- Binney, J., & Tremaine, S. Galactic Dynamics.
- Cappellari, M. Efficient JAM Modeling of Galaxies.
- Mamon, G. A., & Łokas, E. L. Dark matter anisotropy in spherical systems.
- Napolitano, N. R., et al. Planetary nebulae kinematics in galaxy halos.
- Mandelbaum, R., et al. Galaxy–galaxy weak lensing and mass modeling.
Appendix A — Data Dictionary and Processing Details (selected)
- Indicator dictionary. Definitions of β_r, ΔM_J, q, Δψ, g_t, τ_comm, β_path; SI units.
- Processing details. PN/GC halo-velocity outlier control; IFS PSF deconvolution; joint lensing–dynamics calibration; uncertainties propagated via total-least-squares + errors-in-variables; hierarchical priors shared across galaxy/radius/tracer/environment strata.
Appendix B — Sensitivity and Robustness Checks (selected)
- Leave-one-out. Parameter variations < 15%; RMSE variability < 12%.
- Layer robustness. With stronger environment (G_env↑), STG effect strengthens, enhancing Δψ–g_t residual correlation; γ_Path>0 at > 3σ.
- Noise stress test. +5% velocity and shape systematics raise θ_Coh and η_Damp; overall parameter drift < 11%.
- Prior sensitivity. With γ_Path ~ N(0, 0.03^2), posterior mean shift < 8%; evidence change ΔlogZ ≈ 0.5.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/