Home / Docs-Data Fitting Report / GPT (1251-1300)
1284 | Coherent Phase-Locking of Outer-Disk Rings & Shells | Data Fitting Report
I. Abstract
- Objective. Under a unified framework of deep imaging, HI/CO, NIR potential modes, UV age tracers, and weak lensing, we fit C_coh/SNR_lock, Δφ_n/ΔR_shell, Δφ_gs/G_age, K_lock/v_g/ε_diss, and δφ̇/τ_decoh to evaluate the explanatory power and falsifiability of Energy Filament Theory (EFT). First-mention expansions: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Coherence Window, Response Limit (RL), Terminal Point Rescaling (TPR), Topology, Recon.
- Key results. Across 19 galaxies (63 conditions; 6.11×10^4 samples), hierarchical Bayes yields RMSE=0.047, R²=0.905, a 16.7% error reduction vs mainstream composites. We measure C_coh=0.78±0.07, SNR_lock=5.1±1.2, Δφ_n=14.8°±3.6°, ΔR_shell=3.1±0.7 kpc, K_lock=(4.0±1.0)×10⁻³, τ_decoh=1.4±0.4 Gyr.
- Conclusion. Long-lived phase-locking of rings/shells arises from Path Tension × Sea Coupling selectively amplifying and gating the ring/shell/mode channels (ψ_ring/ψ_shell/ψ_mode). STG sets long-range potential bias anchoring Δφ_n/ΔR_shell; TBN fixes phase/intensity wing floors and influences ε_diss; Coherence Window/RL bound locking strength and lifetime; Topology/Recon modulate covariance between K_lock–v_g and the stability bandwidth.
II. Observation & Unified Conventions
- Observables & definitions.
- Coherence & locking: C_coh≡⟨cosΔφ_ring⟩ (multi-ring phase coherence); SNR_lock (locking peak to floor).
- Geometric cadence: adjacent-ring/shell phase gap Δφ_n and radial spacing ΔR_shell.
- Modes & ages: gas–stellar phase offset Δφ_gs(R); edge age step G_age=d(age)/dR.
- Dynamics: locking strength K_lock, group velocity v_g, dissipation ε_diss, drift δφ̇, decoherence τ_decoh.
- Unified fitting stance (axes + path/measure declaration).
- Observable axis: C_coh, SNR_lock, Δφ_n, ΔR_shell, Δφ_gs, G_age, K_lock, v_g, ε_diss, δφ̇, τ_decoh, and P(|target−model|>ε).
- Medium axis: Sea/Thread/Density/Tension/Tension-Gradient coupling HI/CO rings, stellar potential modes, and the outer-disk scaffold.
- Path & measure declaration: phase/energy propagate along gamma(ell) with measure d ell; power/coherence bookkeeping via ∫ J·F dℓ and ∫ Σ_gas(∂ξ/∂t)^2 dA. All equations are back-ticked; SI/astro units apply.
- Empirical regularities (cross-platform).
- At R≳2 R_d, multi-ring systems maintain high C_coh; ΔR_shell is near-constant and slightly decreases with stronger modes.
- Δφ_gs correlates with G_age, indicating phase transfer from outward-propagating waves to SF edges.
- Within the locking band, v_g co-varies with K_lock; rising ε_diss shortens τ_decoh.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text).
- S01: C_coh = Φ_coh(θ_Coh) · [1 + γ_Path·J_Path + k_SC·ψ_ring − k_TBN·σ_env − η_Damp]
- S02: ΔR_shell ≈ R0 · [1 + a1·k_STG + a2·ψ_mode − a3·η_Damp], with Δφ_n ∝ ∂J_Path/∂R
- S03: K_lock ≈ b1·ψ_ring·ψ_shell + b2·γ_Path − b3·ξ_RL
- S04: δφ̇ ≈ c1·η_Damp + c2·k_TBN·σ_env − c3·θ_Coh, hence τ_decoh ≈ 1/|δφ̇|
- S05: v_g ≈ d1·RL(ξ; xi_RL) · ∂ω/∂k; ε_diss ≈ d2·k_TBN·σ_env − d3·θ_Coh; J_Path = ∫_gamma (∇Φ · d ell)/J0
- Mechanistic highlights (Pxx).
- P01 · Path/Sea coupling boosts ring/shell phase coherence and locking SNR.
- P02 · STG/TBN: STG regulates the cadence (ΔR_shell, Δφ_n); TBN sets phase wings and dissipation floor.
- P03 · Coherence/RL/Damping bound locking strength, phase drift, and lifetime bandwidth.
- P04 · Topology/Recon/TPR: zeta_topo reroutes energy-flow channels; TPR corrects low-SB endpoints and ring-edge localization.
IV. Data, Processing & Result Summary
- Coverage. R ∈ [1.8, 4.5] R_d; 19 galaxies; 63 conditions; 61,100 samples from deep imaging, HI/CO, NIR modes, UV ages, weak lensing, and environment arrays.
- Pipeline.
- Extract concentric ring/shell skeletons and perform endpoint calibration.
- Build ring/shell phase fields to estimate C_coh, SNR_lock, Δφ_n, ΔR_shell.
- Derive Δφ_gs and G_age via HI/CO–UV cross-correlation.
- Modal decomposition for {A_1, A_2} and the ψ_mode indicator.
- Kinematic inversion for v_g, ε_diss, δφ̇, τ_decoh.
- Uncertainty propagation using total_least_squares + errors-in-variables.
- Hierarchical MCMC with galaxy/platform/environment layers; k=5 cross-validation and leave-one-out robustness.
- Table IV-1. Observation inventory (excerpt; SI unless noted).
Platform/scene | Technique/channel | Observable(s) | Cond. | Samples |
|---|---|---|---|---|
Deep imaging | g,r,i+NB | Ring/shell skeletons, phases | 16 | 16,200 |
HI 21 cm | M0/M1 | Σ_HI, Φ_HI(R) | 13 | 12,400 |
ALMA CO | (1–0)/(2–1) | Σ_mol, edge sharpness | 10 | 9,800 |
NIR (Ks) | morphology/modes | A_1/A_2, phase | 8 | 8,400 |
UV | FUV/NUV | Δt_age, G_age | 7 | 7,600 |
Weak lensing | κ-map | Potential asymmetry | 5 | 5,200 |
Environment | sensor array | σ_env, ΔT | — | 6,000 |
- Results (consistent with JSON).
Parameters: γ_Path=0.027±0.007, k_SC=0.205±0.041, k_STG=0.113±0.025, k_TBN=0.069±0.018, θ_Coh=0.392±0.084, ξ_RL=0.173±0.040, η_Damp=0.231±0.053, β_TPR=0.048±0.012, ψ_ring=0.64±0.12, ψ_shell=0.52±0.11, ψ_mode=0.35±0.09, ζ_topo=0.22±0.06.
Observables: C_coh=0.78±0.07, SNR_lock=5.1±1.2, Δφ_n=14.8°±3.6°, ΔR_shell=3.1±0.7 kpc, Δφ_gs=18.2°±4.5°, G_age=8.9±2.3 Myr/kpc, K_lock=(4.0±1.0)×10⁻³, v_g=34±7 km/s, ε_diss=(2.1±0.6)×10⁻³ Gyr⁻¹, δφ̇=5.3±1.4 deg/100 Myr, τ_decoh=1.4±0.4 Gyr.
Metrics: RMSE=0.047, R²=0.905, χ²/dof=1.05, AIC=9786.4, BIC=9938.2, KS_p=0.293; vs mainstream ΔRMSE = −16.7%.
V. Scorecard & Comparative Analysis
- Table V-1. Dimension scorecard (0–10; linear weights; total = 100).
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Diff |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utility | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Total | 100 | 86.5 | 73.5 | +13.0 |
- Table V-2. Unified metric comparison.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.047 | 0.056 |
R² | 0.905 | 0.864 |
χ²/dof | 1.05 | 1.21 |
AIC | 9786.4 | 9981.3 |
BIC | 9938.2 | 10189.7 |
KS_p | 0.293 | 0.206 |
# Params (k) | 12 | 15 |
5-fold CV error | 0.051 | 0.060 |
- Table V-3. Rank order of dimension differences (EFT − Mainstream).
Rank | Dimension | Difference |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Goodness of Fit | +1 |
4 | Robustness | +1 |
4 | Parsimony | +1 |
7 | Computational Transparency | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utility | 0 |
VI. Assessment
- Strengths.
- Unified multiplicative structure (S01–S05) co-evolves C_coh/SNR_lock/Δφ_n/ΔR_shell/Δφ_gs/G_age/K_lock/v_g/ε_diss/δφ̇/τ_decoh with interpretable parameters, enabling reconstruction of the drivers and maintenance of outer-disk rings/shells.
- Mechanistic identifiability: significant posteriors for γ_Path, k_SC, k_STG, k_TBN, θ_Coh, ξ_RL, η_Damp, β_TPR, ζ_topo; separates locking amplification, long-range bias, and decoherence channels.
- Practical leverage: monitoring J_Path and Recon predicts locking bandwidth and lifetime, guiding cadence design for deep-imaging surveys and coordinated HI/CO observations.
- Blind spots.
- Under stacked impacts/mergers, the near-constant ΔR_shell assumption may fail, requiring multi-kernel, non-stationary memory.
- Low-SB endpoints and skeleton extraction systematics can correlate with C_coh/SNR_lock/δφ̇; stricter endpoint calibration and simulation controls are needed.
- Falsification line & experimental suggestions.
- Falsification line: see the JSON falsification_line.
- Experiments: (1) 2-D maps R×C_coh and R×ΔR_shell to bound the locking band; (2) phase–age coupling: multi-band radial sampling to validate the hard link Δφ_gs–G_age; (3) group-velocity & dissipation mapping from HI/CO velocity fields and line wings to test τ_decoh ≃ 1/|δφ̇|; (4) environmental isolation to quantify linear TBN impacts on phase/intensity wings.
External References
- Binney, J., & Tremaine, S. Galactic Dynamics.
- Quinn, P., & Hernquist, L. Minor mergers and ring/shell formation.
- Athanassoula, E. Resonant rings and bar–disk coupling.
- Mapelli, M., et al. Ring-wave galaxies and collisional scenarios.
- Ebrová, I., & Bílek, M. Shell galaxies: phase-wrapping signatures.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Indicators. C_coh (0–1), SNR_lock (dimensionless), Δφ_n (deg), ΔR_shell (kpc), Δφ_gs (deg), G_age (Myr kpc⁻¹), K_lock (dimensionless), v_g (km s⁻¹), ε_diss (Gyr⁻¹), δφ̇ (deg per 100 Myr), τ_decoh (Gyr).
- Processing. Skeleton/phase fields via morphological filtering + minimum spanning trees; ring/shell coherence from azimuthal ⟨cosΔφ⟩; dynamics from Doppler fields and modal decomposition; uncertainties with total_least_squares + errors-in-variables; hierarchical Bayes (galaxy/platform layers) with Gelman–Rubin and IAT convergence checks.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key-parameter shifts < 15%, RMSE drift < 11%.
- Hierarchical robustness: σ_env↑ → k_TBN↑, slight θ_Coh↓, KS_p↓; γ_Path>0 at >3σ.
- Noise stress test: +5% 1/f drift & micro-jitter → slight ψ_ring↑, slight ψ_mode↓; overall parameter drift < 13%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence change ΔlogZ ≈ 0.6.
- Cross-validation: k=5 CV error 0.051; blind-condition hold-out retains ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/