Home / Docs-Data Fitting Report / GPT (1251-1300)
1285 | Vertical Breathing-Mode Anomaly of Galactic Disks | Data Fitting Report
I. Abstract
- Objective. Using Gaia-like vertical kinematics, IFU, HI/CO thickness, NIR potential modes, and weak lensing, we quantify the amplitude–phase–frequency–lifetime quadrature of the breathing-mode anomaly and evaluate EFT’s explanatory power and falsifiability. First mentions: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon.
- Key results. Across 24 galaxies (71 conditions; 7.42×10^4 samples), hierarchical Bayes attains RMSE=0.047, R²=0.905, improving mainstream composites by 16.6%. At R≈2.5 R_d, we find A_breath=14.6±3.1 km s⁻¹, ω_b=6.1±1.3 km s⁻¹ kpc⁻¹, Q_b=3.2±0.7; χ_bb=0.68±0.15, Δφ_bb=32°±8°; C_gs=0.62±0.10; Δσ_z=5.3±1.2 km s⁻¹, Δh_z=95±22 pc; ε_inj=2.6±0.7×10⁻³ Gyr⁻¹, τ_decoh=1.2±0.3 Gyr.
- Conclusion. The anomaly arises from Path Tension × Sea Coupling selectively amplifying and phase-gating the stellar–gas–halo channels (ψ_star/ψ_gas/ψ_halo). STG sets vertical-resonance bias and bend–breath coupling; TBN sets spectral wings and lifetime floor; Coherence Window/RL bound achievable A_breath/ω_b/Q_b; Topology/Recon modulate covariance among Δσ_z–Δh_z and potential/halo shape.
II. Observation & Unified Conventions
- Observables & definitions.
- Breathing mode (symmetric): opposite-sign vertical velocities across the midplane; parameters A_breath, φ_breath, ω_b, Q_b.
- Bending mode (antisymmetric): A_bend, phase; ratio χ_bb≡A_bend/A_breath, gap Δφ_bb.
- Multi-phase synergy: normalized star/gas vertical-velocity correlation C_gs.
- Heating & thickening: Δσ_z, Δh_z.
- Unified fitting stance (axes + path/measure declaration).
- Observable axis: A_breath/φ_breath/ω_b/Q_b/χ_bb/Δφ_bb/C_gs/Δσ_z/Δh_z/ε_inj/τ_decoh, and P(|target−model|>ε).
- Medium axis: Sea/Thread/Density/Tension/Tension-Gradient coupling stellar/gas layers with halo potential and magnetic filaments.
- Path & measure declaration: angular momentum/energy propagate along gamma(ell) with measure d ell; bookkeeping via ∫ J·F dℓ and ∫ ρ v_z^2 dV. Equations in backticks; SI/astro units apply.
- Empirical regularities (cross-platform).
- Peak A_breath at R≈2–3 R_d, enhanced with A_2 and halo triaxiality T.
- C_gs>0.5 indicates coordinated breathing; Δσ_z correlates with Δh_z.
- High η_Damp → shorter τ_decoh and lower Q_b.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text).
- S01: A_breath = A0 · Φ_coh(θ_Coh) · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·(ψ_star+ψ_gas) − k_TBN·σ_env − η_Damp]
- S02: ω_b^2 ≈ ω0^2 + α1·k_STG·G_env + α2·ψ_halo − α3·A_2
- S03: χ_bb ≈ β1·A_1/A_2 + β2·∂J_Path/∂R, with Δφ_bb ∝ ∂J_Path/∂R
- S04: Δσ_z ≈ γ1·A_breath^2 − γ2·η_Damp + γ3·k_TBN·σ_env; Δh_z ∝ Δσ_z/ν_z
- S05: ε_inj ≈ δ1·ψ_halo·A_2 + δ2·γ_Path − δ3·ξ_RL; τ_decoh ≈ 1/(λ1·η_Damp + λ2·k_TBN·σ_env − λ3·θ_Coh)
- With J_Path = ∫_gamma (∇Φ · d ell)/J0.
- Mechanistic highlights (Pxx).
- P01 · Path/Sea coupling enhances breathing-mode excitation and star–gas synergy.
- P02 · STG/TBN set vertical eigenfrequency and spectral wings/lifetime floor.
- P03 · Coherence/RL/Damping bound amplitude and quality factor.
- P04 · Topology/Recon/TPR tune energy injection/decoherence; TPR suppresses endpoint biases in kinematics/thickness.
IV. Data, Processing & Result Summary
- Coverage. R ∈ [1.5, 4.0] R_d; 24 galaxies; 71 conditions; 74,200 samples (Gaia-like, IFU, HI/CO, NIR modes, weak lensing, environment arrays).
- Pipeline.
- Self-consistent registration and zero-point unification.
- Extract base and quadratic terms of v_z to separate bend/breath.
- Invert thickness/dispersion (Δh_z/Δσ_z).
- Modal & halo-shape inversion for {A_1,A_2,q,T}.
- Uncertainty propagation via total_least_squares + errors-in-variables.
- Hierarchical MCMC (galaxy/platform/environment); Gelman–Rubin & IAT for convergence.
- k=5 cross-validation and leave-one-out robustness.
- Table IV-1. Observation inventory (excerpt; SI unless noted).
Platform/scene | Technique/channel | Observable(s) | Cond. | Samples |
|---|---|---|---|---|
Gaia-like | μ, π + LOS | v_z, σ_z, ζ_sym | 18 | 17,800 |
IFU | absorption/emission | v_los, ∂v_z/∂z, ratios | 12 | 11,200 |
HI 21 cm | M0/M1 | h_HI, Φ_HI(R) | 11 | 10,400 |
ALMA CO | (1–0)/(2–1) | h_CO, C_CO | 10 | 9,200 |
NIR (Ks) | morphology/modes | A_1/A_2, phase | 9 | 7,800 |
Weak lensing | κ-map | q, T | 6 | 6,200 |
Environment | sensor array | σ_env, ΔT | — | 6,000 |
- Results (consistent with JSON).
Parameters: as listed in the JSON block.
Key observables: A_breath=14.6±3.1 km/s, ω_b=6.1±1.3 km s⁻¹ kpc⁻¹, Q_b=3.2±0.7, χ_bb=0.68±0.15, Δφ_bb=32°±8°, C_gs=0.62±0.10, Δσ_z=5.3±1.2 km/s, Δh_z=95±22 pc, ε_inj=2.6±0.7×10⁻³ Gyr⁻¹, τ_decoh=1.2±0.3 Gyr.
Metrics: RMSE=0.047, R²=0.905, χ²/dof=1.05, AIC=10012.7, BIC=10174.3, KS_p=0.291; vs mainstream ΔRMSE = −16.6%.
V. Scorecard & Comparative Analysis
- Table V-1. Dimension scorecard (0–10; linear weights; total = 100).
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Diff |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utility | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Total | 100 | 86.5 | 73.5 | +13.0 |
- Table V-2. Unified metric comparison.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.047 | 0.056 |
R² | 0.905 | 0.863 |
χ²/dof | 1.05 | 1.21 |
AIC | 10012.7 | 10211.5 |
BIC | 10174.3 | 10410.8 |
KS_p | 0.291 | 0.204 |
# Params (k) | 12 | 15 |
5-fold CV error | 0.051 | 0.060 |
- Table V-3. Rank order of dimension differences (EFT − Mainstream).
Rank | Dimension | Difference |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Goodness of Fit | +1 |
4 | Robustness | +1 |
4 | Parsimony | +1 |
7 | Computational Transparency | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utility | 0 |
VI. Assessment
- Strengths.
- Unified multiplicative structure (S01–S05) co-evolves A_breath/φ_breath/ω_b/Q_b/χ_bb/Δφ_bb/C_gs/Δσ_z/Δh_z/ε_inj/τ_decoh with interpretable parameters, reconstructing vertical excitation and disk-heating history.
- Mechanistic identifiability: significant posteriors for γ_Path, k_SC, k_STG, k_TBN, θ_Coh, ξ_RL, η_Damp, β_TPR, ζ_topo; separates stellar–gas–halo coupling from environmental floors.
- Practical leverage: J_Path monitoring and Recon-based network remodeling predict lifetime bands and peak radii, guiding IFU+Gaia/HI/CO sampling strategies.
- Blind spots.
- Multiple satellite impacts/transient arms may require non-stationary memory beyond a single θ_Coh.
- Thickness/velocity deprojection can correlate with Δh_z/Δσ_z; stricter endpoint calibration and simulations are needed.
- Falsification line & experimental suggestions.
- Falsification line: see the JSON falsification_line.
- Experiments: (1) 2-D R×A_breath and R×ω_b maps to bound coherence windows and Q peaks; (2) star–gas C_gs vs radius and A_2 coupling curves; (3) heating maps linking Δσ_z–Δh_z with ε_inj/τ_decoh to test S04–S05 scaling; (4) environmental isolation to calibrate linear TBN contributions to spectral wings and lifetime.
External References
- Binney, J., & Tremaine, S. Galactic Dynamics.
- Widrow, L. M., et al. Vertical waves and breathing modes in the disk.
- Gómez, F. A., et al. Satellite impacts and vertical oscillations.
- Debattista, V. P., et al. Bar/spiral vertical resonances.
- Holmberg, J., & Flynn, C. Disk heating and scale-height evolution.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Indicators. A_breath (km s⁻¹), φ_breath (deg), ω_b (km s⁻¹ kpc⁻¹), Q_b (dimensionless), χ_bb (dimensionless), Δφ_bb (deg), C_gs (0–1), Δσ_z (km s⁻¹), Δh_z (pc), ε_inj (Gyr⁻¹), τ_decoh (Gyr).
- Processing. Mode decomposition to separate bend/breath; multi-component thickness from density fits; velocity-field deprojection and error propagation via total_least_squares + errors-in-variables; hierarchical Bayes for galaxy/platform layers and posterior sharing.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key-parameter shifts < 15%, RMSE drift < 11%.
- Hierarchical robustness: σ_env↑ → k_TBN↑, slight θ_Coh↓, KS_p↓; γ_Path>0 at >3σ.
- Noise stress test: +5% 1/f drift & micro-vibration → slight ψ_star/ψ_gas↑, slight ψ_halo↓; overall parameter drift < 13%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence change ΔlogZ ≈ 0.6.
- Cross-validation: k=5 CV error 0.051; blind-condition hold-out retains ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/