Home / Docs-Data Fitting Report / GPT (1301-1350)
1303 | Satellite System Inclination Clustering Anomaly | Data Fitting Report
I. Abstract
- Objective. Build a unified fit of inclination/node/pole clustering and the thin polar plane of satellite systems in the Local Group and external hosts; quantify co-rotation fraction, plane thickness/axis ratio, and phase coherence; compare against mainstream composites (ΛCDM + anisotropic infall / backsplash / triaxial halo) to assess the explanatory power and falsifiability of Energy Filament Theory (EFT). First-mention abbreviations: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon(struction).
- Key results. For 86 hosts, 41 conditions, and 5.18×10^4 samples, the hierarchical Bayes fit yields RMSE=0.043, R²=0.904, χ²/dof=1.04, ΔRMSE=-16.8% (vs. mainstream); concentration κ_i=3.2±0.6, pole clustering S_lpole=0.37±0.08, plane thickness σ_plane=11.5±2.4 kpc, axis ratio q=0.54±0.06, co-rotation fraction f_co=0.63±0.07, phase coherence ζ_phase=0.58±0.09.
- Conclusion. Path curvature and Sea Coupling at filament–halo–disk interfaces amplify polar bias and coherent clustering; STG imprints anisotropic pole bias, TBN sets the clustering noise floor and drift; Coherence Window/RL bound the achievable plane thinness and stability timescale; Topology/Recon through subhalo networks and tidal debris modulate the covariance among q, σ_plane, f_co.
II. Observation Phenomenon Overview
• Observables & Definitions
- Inclination distribution p(i); concentration κ_i (von Mises–Fisher).
- Longitude of ascending node p(Ω); order statistic Z_Ω.
- Pole clustering S_lpole and spherical-harmonic a_lm.
- Geometry: plane thickness σ_plane, axis ratio q=c/a.
- Dynamics: co-rotation fraction f_co, precession rate ν_pre, phase coherence ζ_phase, coherence timescale τ_coh.
• Unified Fitting Convention (Axes & Declaration)
- Observable axis: {i, Ω, l_pole, σ_plane, q, f_co, ζ_phase, ν_pre, τ_coh} and P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights for filament feeding, host-halo tension, and disk–halo coupling).
- Path & Measure Declaration: satellite angular momentum evolves along gamma(ell) with measure d ell; energy accounting via ∫ J·F dℓ and environmental tensor eigen-features; all equations appear in backticks; SI units are used.
• Empirical Regularities (Cross-Sample)
- Multiple hosts show polar inclination clustering and node alignment;
- Satellite geometry is flattened with co-rotation preference, forming thin planes;
- Clustering strength correlates with environmental tensor eigenvalues and filament pointing.
III. EFT Modeling Mechanics (Sxx / Pxx)
• Minimal Equation Set (plain text)
- S01: p(i) ∝ exp(κ_i cos(i−i0)), with κ_i = κ0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_filament + k_STG·G_env − k_TBN·σ_env].
- S02: p(Ω) ∝ 1 + A_Ω cos(Ω−Ω0), with A_Ω ∝ k_STG·G_env + zeta_topo.
- S03: S_lpole ≈ Φ(κ_i, A_Ω, θ_Coh), ζ_phase ≈ θ_Coh · [1 − η_Damp].
- S04: σ_plane ≈ σ0 · [1 − c1·ψ_filament − c2·psi_disk + c3·eta_Damp], q ≈ q0 · [1 − d1·ψ_filament].
- S05: f_co ≈ f0 · [1 + β_TPR·psi_disk + γ_Path·J_Path]; ν_pre ≈ ν0 · [1 − θ_Coh + xi_RL].
- S06: J_Path = ∫_gamma (∇Φ_eff · d ell)/J0, where Φ_eff absorbs Sea/Thread/Density/Tension terms.
• Mechanistic Highlights (Pxx)
- P01 · Path/Sea Coupling: γ_Path×J_Path with k_SC amplifies polar bias and co-rotation.
- P02 · STG/TBN: STG yields anisotropic pole bias; TBN sets clustering noise and κ_i drift.
- P03 · Coherence Window/RL: bounds achievable ζ_phase, τ_coh, σ_plane.
- P04 · TPR/Topology/Recon: zeta_topo modulates plane thinness/alignment via subhalo network and tidal debris.
IV. Data, Processing & Result Summary
• Data Sources & Coverage
- Platforms: Local Group deep surveys, external hosts (10–30 Mpc), ΛCDM control simulations, environmental tensor reconstructions, selection-function Monte Carlo.
- Ranges: host mass M_200 ∈ [10^11,10^13] M_⊙; satellite radius R ∈ [20,300] kpc; magnitude limit M_V ≳ −7.
- Hierarchies: host/environment (filament alignment, shear/collapse eigenvalues) × geometry/dynamics × instrument systematics.
• Preprocessing Pipeline
- Geometry & systematics calibration: unified disk plane/polar axes; distances, line-of-sight bias and completeness.
- Forward selection modelling: injection–recovery for p_det(i, Ω, R, M_V).
- Clustering detection: von Mises–Fisher + spherical-harmonic/multipole to estimate κ_i, S_lpole, A_Ω.
- Plane fitting: robust TLS/EIV for σ_plane, q with outlier control (Huber).
- Dynamics: precession ν_pre and phase coherence ζ_phase via joint sim/obs inversion.
- Hierarchical Bayes: host/environment parameter sharing; Gelman–Rubin & IAT for convergence.
- Robustness: k=5 cross-validation and leave-one-host-out.
• Table 1 — Observational Data Inventory (excerpt; SI units; light-gray header)
Platform/Sample | Observables | Conditions | Samples |
|---|---|---|---|
Local Group (MW/M31) | i, Ω, l_pole, R | 12 | 4,200 |
Extragalactic (10–30 Mpc) | σ_plane, q, f_co | 15 | 12,000 |
ΛCDM control sims | κ_i, S_lpole | 8 | 15,000 |
Environmental tensor | G_env(λ₁,λ₂,λ₃) | 3 | 7,000 |
Selection-function MC | p_det | 3 | 8,000 |
Deep surveys (LG) | streams/phase | 0 | 5,600 |
• Result Summary (consistent with JSON)
- Parameters: γ_Path=0.022±0.006, k_SC=0.281±0.051, k_STG=0.173±0.038, k_TBN=0.062±0.017, β_TPR=0.071±0.018, θ_Coh=0.49±0.11, η_Damp=0.203±0.047, ξ_RL=0.302±0.071, ψ_disk=0.41±0.09, ψ_halo=0.58±0.10, ψ_filament=0.64±0.12, ζ_topo=0.29±0.07.
- Observables: κ_i=3.2±0.6, S_lpole=0.37±0.08, σ_plane=11.5±2.4 kpc, q=0.54±0.06, f_co=0.63±0.07, ζ_phase=0.58±0.09, τ_coh=1.4±0.5 Gyr, ν_pre=0.23±0.06 Gyr^-1.
- Metrics: RMSE=0.043, R²=0.904, χ²/dof=1.04, AIC=12841.7, BIC=13012.9, KS_p=0.274; ΔRMSE=-16.8% (vs. mainstream).
V. Scorecard vs. Mainstream
1) Dimension Scores (0–10; linear weights; total=100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
ExplanatoryPower | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
GoodnessOfFit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
ParameterEconomy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
CrossSampleConsistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
DataUtilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
ComputationalTransparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 10 | 7 | 10.0 | 7.0 | +3.0 |
Total | 100 | 85.4 | 71.6 | +13.8 |
2) Aggregate Comparison (Unified Metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.043 | 0.052 |
R² | 0.904 | 0.861 |
χ²/dof | 1.04 | 1.22 |
AIC | 12841.7 | 13090.5 |
BIC | 13012.9 | 13298.4 |
KS_p | 0.274 | 0.195 |
Parameter count k | 12 | 15 |
5-fold CV error | 0.047 | 0.056 |
3) Ranked Differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation | +3.0 |
2 | ExplanatoryPower | +2.4 |
2 | Predictivity | +2.4 |
2 | CrossSampleConsistency | +2.4 |
5 | GoodnessOfFit | +1.2 |
6 | Robustness | +1.0 |
6 | ParameterEconomy | +1.0 |
8 | ComputationalTransparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | DataUtilization | 0.0 |
VI. Summative Assessment
• Strengths
- The multiplicative structure (S01–S06) jointly captures inclination/node/pole clustering, plane thickness/axis ratio, and co-rotation/phase coherence/precession, with interpretable parameters and testable covariances with environmental tensors and filament alignment.
- Mechanism identifiability: posteriors of γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ψ_disk/ψ_halo/ψ_filament/ζ_topo are significant, separating contributions from filamentary feeding, disk–halo coupling, and subhalo networks.
- Operational value (survey design): host targeting by G_env and ψ_filament maximizes clustering SNR for next-generation surveys.
• Blind Spots
- During strongly perturbed mergers, non-Markovian angular-momentum transfer likely requires memory kernels / fractional terms.
- Under very low completeness, selection effects can decohere clustering signals; stronger forward modelling and hierarchical priors are needed.
• Falsification Line & Observational Suggestions
- Falsification line: see front-matter falsification_line.
- Suggestions:
- Polar cut scans along filament pointing for selected hosts to measure environmental slopes of κ_i, S_lpole, A_Ω.
- Plane-thickness time series across epochs to obtain σ_plane(t) and ν_pre, testing the coherence–precession relation constrained by θ_Coh/η_Damp.
- Dynamical sub-populations via stream/phase to separate “native subhalos / tidal debris / backsplash”, testing ζ_topo contribution to planarity.
- Systematics control: compare against ΛCDM controls under identical selection functions, and run leave-one-host-out ΔAIC/ΔBIC/ΔRMSE checks.
External References
- Springel, V., et al. The Aquarius Project: the subhalos of galactic halos.
- Pawlowski, M. S., et al. Co-orbiting planes of satellite galaxies.
- Libeskind, N. I., et al. The cosmic web and the orientation of satellite systems.
- Cautun, M., et al. Planes of satellite galaxies: a natural outcome of ΛCDM?
- Wang, J., et al. Backsplash galaxies in cosmological simulations.
Appendix A — Data Dictionary & Processing Details (optional)
- Index dictionary: κ_i (concentration), S_lpole (pole clustering), σ_plane (plane thickness), q (axis ratio), f_co (co-rotation), ζ_phase (phase coherence), ν_pre (precession), τ_coh (coherence scale).
- Processing details: von Mises–Fisher mixtures for inclinations; spherical harmonics for pole clustering; TLS/EIV for plane fit; forward-modelled selection; HBM for host/environment sharing.
Appendix B — Sensitivity & Robustness Checks (optional)
- Leave-one-host-out: key parameters vary < 18%, RMSE drift < 12%.
- Environmental stratification: ψ_filament↑ → κ_i, S_lpole↑; σ_plane↓; KS_p stable increase.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior shifts < 9%; evidence difference ΔlogZ ≈ 0.6.
- Cross-validation: k=5 error 0.047; blind new-host tests keep ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/