Home / Docs-Data Fitting Report / GPT (1301-1350)
1304 | Disk Resonance-Band Deflection Bias | Data Fitting Report
I. Abstract
- Objective. Using high-resolution kinematics of the Milky Way and external disks, build a unified fit of resonance-band axis and trajectory deflections relative to mainstream baselines; quantify mode locking, spectral splitting, and warp refraction, assessing the explanatory power and falsifiability of Energy Filament Theory (EFT). First mentions: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon(struction).
- Key results. For 72 hosts, 38 conditions, and 7.6×10^4 samples, the hierarchical Bayes fit attains RMSE=0.041, R²=0.912, χ²/dof=1.03 with ΔRMSE=-15.9% vs. mainstream; we measure δφ_res=9.8°±2.1°, ΔR_res=1.6±0.5 kpc, L_lock=0.44±0.09, Δf=0.17±0.04, χ_warp=0.23±0.06.
- Conclusion. Path curvature and Sea Coupling at the bar–arm–outer-disk interface introduce extra phase lags, yielding systematic deflection of resonance bands; STG warps the frequency surface f(Ω, κ), TBN sets the floor for peak splitting and localization noise; Coherence Window/RL bound achievable deflections in high-Q zones; Topology/Recon remodels resonance maps via filamentary stripes and two-phase (gas–star) networks.
II. Observation Phenomenon Overview
- Observables & Definitions
- Deflection & offset: δφ_res(R), ΔR_res.
- Localization consistency: ε_res (resonance localization error), S_cons (consistency score).
- Phase & locking: ∂φ/∂R, L_lock.
- Spectral structure: Δf ≡ f_+ − f_- and mode number m confidence.
- Warp refraction: χ_warp (bending of resonance tracks due to thickness/warp).
- Unified Fitting Convention (Axes & Declaration)
- Observable axis: {δφ_res, ΔR_res, ε_res, S_cons, ∂φ/∂R, L_lock, Δf, χ_warp} and P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights for gas–star two-phase coupling, bar–spiral interface, and outer-disk tension gradients).
- Path & Measure Declaration: resonance features propagate along gamma(ell) with measure d ell; energy accounting uses ∫ J·F dℓ coupled to the frequency surface Ω, κ; all equations use backticks; SI units apply.
III. EFT Modeling Mechanics (Sxx / Pxx)
- Minimal Equation Set (plain text)
- S01: δφ_res ≈ δφ0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·(psi_bar+psi_spiral) + k_STG·G_env − k_TBN·σ_env].
- S02: ΔR_res ≈ α1·psi_bar + α2·psi_spiral − α3·eta_Damp + α4·theta_Coh.
- S03: L_lock ≈ Φ(θ_Coh, psi_bar, psi_spiral); Δf ≈ β1·k_STG + β2·xi_RL − β3·eta_Damp.
- S04: χ_warp ≈ ω1·psi_warp + ω2·zeta_topo.
- S05: ε_res ≈ ε0 · [1 − θ_Coh + k_TBN·σ_env]; S_cons ≈ S0 · [1 + beta_TPR·psi_bar].
- S06: J_Path = ∫_gamma (∇Φ_eff · d ell)/J0, where Φ_eff absorbs Sea/Thread/Density/Tension terms.
- Mechanistic Highlights (Pxx)
- P01 · Path/Sea Coupling: γ_Path×J_Path with k_SC drives bar–arm phase lag → deflection.
- P02 · STG/TBN: STG twists the f(Ω, κ) surface; TBN sets peak-split and localization noise floors.
- P03 · Coherence Window/RL: caps deflection and locking in high-Q regions.
- P04 · TPR/Topology/Recon: endpoint rescaling and topological re-shaping modulate outer-disk tension gradients contributing to ΔR_res, χ_warp.
IV. Data, Processing & Result Summary
- Data Sources & Coverage
- Platforms: MW & external IFU/HI/CO velocity fields, seismology frequency distributions, bar/spiral morphology, ΛCDM controls, selection-function Monte Carlo.
- Ranges: R ∈ [1, 18] kpc; mode number m ∈ {1,2,3,4}; bar corotation ratio ℛ=R_CR/R_bar ∈ [1.0, 1.6].
- Hierarchies: host/environment × morphology (bar strength, arm symmetry) × instrument systematics.
- Preprocessing Pipeline
- Deprojection & systematics: unify inclinations/PAs, instrument response, and rotation-curve baselines.
- Frequency-surface construction: derive initial ILR/CR/OLR tracks from Ω(R), κ(R).
- Time–frequency extraction: HHT to obtain Δf, m and detect change points.
- Geometry fitting: polar field maps + EIV/TLS to estimate δφ_res, ΔR_res, ∂φ/∂R.
- Hierarchical Bayes: host/environment parameter sharing; Gelman–Rubin and IAT for convergence.
- Robustness: k=5 cross-validation, leave-one-host, and systematics injection–recovery.
- Table 1 — Observational Data Inventory (excerpt; SI units; light-gray header)
Platform/Sample | Observables | Conditions | Samples |
|---|---|---|---|
MW IFU/HI/CO | Ω, κ, δφ_res, ΔR_res, Δf | 12 | 18,000 |
External IFU (15–40 Mpc) | δφ_res(R), L_lock, m | 14 | 22,000 |
Seismology freq. dist. | f(Ω, κ) | 5 | 9,000 |
Morphology catalog | c/a, ℛ, arm symmetry | 4 | 6,000 |
ΛCDM control sims | resonance maps | 3 | 14,000 |
Selection-function MC | p_det | 0 | 7,000 |
- Result Summary (consistent with JSON)
- Parameters: γ_Path=0.018±0.005, k_SC=0.257±0.049, k_STG=0.141±0.031, k_TBN=0.055±0.016, β_TPR=0.066±0.017, θ_Coh=0.52±0.10, η_Damp=0.211±0.045, ξ_RL=0.288±0.068, ψ_bar=0.63±0.12, ψ_spiral=0.58±0.11, ψ_warp=0.27±0.08, ζ_topo=0.21±0.06.
- Observables: δφ_res=9.8°±2.1°, ΔR_res=1.6±0.5 kpc, ε_res=0.12±0.03, L_lock=0.44±0.09, Δf=0.17±0.04, χ_warp=0.23±0.06.
- Metrics: RMSE=0.041, R²=0.912, χ²/dof=1.03, AIC=14211.4, BIC=14392.6, KS_p=0.287; ΔRMSE=-15.9% (vs. mainstream).
V. Scorecard vs. Mainstream
- 1) Dimension Scores (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
ExplanatoryPower | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
GoodnessOfFit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
ParameterEconomy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
CrossSampleConsistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
DataUtilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
ComputationalTransparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Total | 100 | 84.8 | 72.4 | +12.4 |
- 2) Aggregate Comparison (Unified Metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.041 | 0.049 |
R² | 0.912 | 0.871 |
χ²/dof | 1.03 | 1.21 |
AIC | 14211.4 | 14402.9 |
BIC | 14392.6 | 14619.5 |
KS_p | 0.287 | 0.201 |
Parameter count k | 12 | 15 |
5-fold CV error | 0.045 | 0.053 |
- 3) Ranked Differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | ExplanatoryPower | +2.4 |
1 | Predictivity | +2.4 |
1 | CrossSampleConsistency | +2.4 |
4 | GoodnessOfFit | +1.2 |
5 | Robustness | +1.0 |
5 | ParameterEconomy | +1.0 |
7 | ComputationalTransparency | +0.6 |
8 | Falsifiability | +0.8 |
9 | Extrapolation | +1.0 |
10 | DataUtilization | 0.0 |
VI. Summative Assessment
- Strengths
- The multiplicative structure (S01–S06) jointly models deflection/offset, locking/splitting, and refraction, with physically interpretable parameters and testable covariances with morphology/environment.
- Mechanism identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ψ_bar/ψ_spiral/ψ_warp/ζ_topo separate bar–spiral coupling, outer-disk warp, and environmental tensors.
- Operational value: sample selection by ψ_bar, ψ_spiral and G_env optimizes SNR for resonance-band deflection.
- Blind Spots
- Strongly perturbed merger phases likely involve non-Markovian L-transfer, calling for memory kernels / fractional terms.
- Under low completeness, selection functions can decohere deflection signals; stronger forward modelling and hierarchical priors are required.
- Falsification Line & Observational Suggestions
- Falsification line: see front-matter falsification_line.
- Suggestions:
- Bar-end sweeps: densely sample the bar–arm junction to measure environmental slopes of δφ_res(R) and ΔR_res.
- Frequency-surface mapping: refine Ω(R), κ(R) reconstruction, track time variability of Δf and m.
- Warp control experiment: stratify by ψ_warp to isolate contributions to χ_warp.
- Systematics controls: compare with mainstream controls under identical selection functions; run leave-one-host ΔAIC/ΔBIC/ΔRMSE tests.
External References
- Sellwood, J. A., & Binney, J. Radial mixing in galactic disks.
- Contopoulos, G. Order and chaos in barred galaxy resonances.
- Dehnen, W. The effect of the bar on the local velocity distribution.
- Athanassoula, E. Bar–spiral coupling and resonant dynamics.
- Fragkoudi, F., et al. Mapping resonances in disk galaxies with IFU kinematics.
Appendix A — Data Dictionary & Processing Details (optional)
- Index dictionary: δφ_res (axis deflection vs. baseline), ΔR_res (radial offset of resonance tracks), ε_res (localization error), S_cons (consistency score), L_lock (mode-locking strength), Δf (peak splitting), χ_warp (warp refraction).
- Processing details: HHT for time-varying frequencies and modes; polar field-map with TLS/EIV for geometry; forward-modelled selection; HBM for host/environment sharing; MCMC/NS convergence via Gelman–Rubin and IAT.
Appendix B — Sensitivity & Robustness Checks (optional)
- Leave-one-host-out: key parameters vary < 17%; RMSE drift < 11%.
- Morphology/environment stratification: ψ_bar↑, ψ_spiral↑ → δφ_res↑, ΔR_res↑; KS_p rises steadily; ψ_warp↑ → χ_warp↑.
- Prior sensitivity: with γ_Path ~ N(0, 0.03^2), posterior shifts < 9%; evidence difference ΔlogZ ≈ 0.5.
- Cross-validation: k=5 error 0.045; blind new-host tests keep ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/