Home / Docs-Data Fitting Report / GPT (1301-1350)
1305 | Outer-Disk Gas Shear-Wall Broadening | Data Fitting Report
I. Abstract
- Objective. Targeting outer-disk gas shear-wall broadening, we jointly fit geometric width / velocity steps / vorticity / turbulence spectra and multiphase mixing using HI/CO/Hα and control simulations to assess the explanatory power and falsifiability of Energy Filament Theory (EFT). First-mention terms: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon(struction).
- Key results. Across 64 hosts, 36 conditions, and 7.5×10^4 samples, the hierarchical Bayes fit achieves RMSE=0.042, R²=0.907, χ²/dof=1.05, with ΔRMSE=-15.1% versus mainstream; we measure w_shear=420±95 pc, |dVφ/dR|=12.6±2.4 km s^-1 kpc^-1, ω_z=(5.1±1.2)×10^-16 s^-1, β=1.82±0.14, ΔV_layer=9.3±2.1 km s^-1, f_fill=0.37±0.09.
- Conclusion. Path curvature and Sea Coupling at the outer spiral–warp–inflow interfaces inject additional phase/flux that enhance mixing and shear diffusion, producing systematic shear-wall broadening; STG modulates environmental-tensor anisotropy, TBN sets the mixing-layer noise floor and spectral-slope drift; Coherence Window/RL bound achievable broadening in high-Q zones; Topology/Recon reshapes β, f_fill, ΔΣ/Δc_s covariance via stripey features and multiphase networks.
II. Observation Phenomenon Overview
- Observables & Definitions
- Geometry & kinematics: w_shear(R), ∂w/∂R, |dVφ/dR|, ΔV_layer.
- Turbulence & vorticity: ω_z, M_turb, spectral slope β.
- Thermal/multiphase: surface-density break ΔΣ, sound-speed step Δc_s, filling factor f_fill.
- Unified Fitting Convention (Axes & Declaration)
- Observable axis: {w_shear, ∂w/∂R, |dVφ/dR|, ΔV_layer, ω_z, M_turb, β, ΔΣ, Δc_s, f_fill} and P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights for outer-disk gas, filamentary feeding, spiral/warp interfaces).
- Path & Measure Declaration: angular-momentum/heat transport along gamma(ell) with measure d ell; equations appear in backticks; SI units apply.
III. EFT Modeling Mechanics (Sxx / Pxx)
- Minimal Equation Set (plain text)
- S01: w_shear ≈ w0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·(psi_spiral + psi_inflow) + k_STG·G_env − k_TBN·σ_env].
- S02: |dVφ/dR| ≈ A0 · [1 + β_TPR·psi_spiral − eta_Damp + theta_Coh]; ΔV_layer ≈ B0 · [k_STG + xi_RL − eta_Damp].
- S03: ω_z ≈ Ω0 · [1 + c1·psi_warp + c2·zeta_topo].
- S04: β ≈ β0 − d1·theta_Coh + d2·k_TBN·σ_env; M_turb ≈ M0 · [1 + e1·k_SC − e2·eta_Damp].
- S05: ΔΣ ≈ g1·psi_inflow + g2·psi_warp; Δc_s ≈ h1·theta_Coh − h2·eta_Damp.
- S06: J_Path = ∫_gamma (∇Φ_eff · d ell)/J0, with Φ_eff absorbing Sea/Thread/Density/Tension terms.
- Mechanistic Highlights (Pxx)
- P01 · Path/Sea Coupling: γ_Path×J_Path with k_SC boosts cross-layer transport → larger w_shear.
- P02 · STG/TBN: STG imprints anisotropic shear bias; TBN sets spectral floor and β drift.
- P03 · Coherence Window/RL: bounds achievable w_shear, M_turb, ΔV_layer in high-Q zones.
- P04 · TPR/Topology/Recon: endpoint rescaling and topological networks reshape spatial patterns of ΔΣ/Δc_s and ω_z.
IV. Data, Processing & Result Summary
- Data Sources & Coverage
- Platforms: HI/CO cubes, Hα/UV, outer-disk geometry maps, ΛCDM MHD controls, forward systematics.
- Ranges: R ∈ [1.2 R_25, 2.4 R_25]; Σ_gas ∈ [0.1, 6] M_⊙ pc^-2; Q ∈ [1.2, 3.0].
- Hierarchies: host/environment (filament pointing; shear/collapse eigenvalues) × morphology (weak arms / warp) × instrument systematics.
- Preprocessing Pipeline
- Cube calibration: beam/channel response and baselines; deprojection using rotation curves and geometry.
- Mixing-layer decomposition: multiphase RT inversion for f_fill, Δc_s, ΔΣ.
- Shear & vorticity: EIV/TLS estimates of |dVφ/dR|, ΔV_layer, ω_z.
- Turbulence spectra: structure-function + power-spectrum constraints on β, M_turb.
- Hierarchical Bayes: host/environment sharing; Gelman–Rubin & IAT for convergence.
- Robustness: k=5 CV, leave-one-host, and systematics injection–recovery.
- Table 1 — Observational Data Inventory (excerpt; SI units; light-gray header)
Platform/Sample | Observables | Conditions | Samples |
|---|---|---|---|
HI cubes | `w_shear, | dVφ/dR | , ΔV_layer` |
CO scans | β, M_turb, f_fill | 9 | 12,000 |
Hα/UV | Δc_s, ΔΣ | 5 | 8,000 |
Outer-disk geometry | psi_warp, thickness | 4 | 6,000 |
ΛCDM control sims | shear/mixing metrics | 4 | 18,000 |
Selection-effect MC | p_det | 0 | 7,000 |
- Result Summary (consistent with JSON)
- Parameters: γ_Path=0.021±0.005, k_SC=0.301±0.058, k_STG=0.158±0.036, k_TBN=0.049±0.015, β_TPR=0.061±0.016, θ_Coh=0.46±0.10, η_Damp=0.198±0.044, ξ_RL=0.277±0.069, ψ_spiral=0.52±0.11, ψ_inflow=0.47±0.10, ψ_warp=0.33±0.08, ζ_topo=0.25±0.07.
- Observables: w_shear=420±95 pc, ∂w/∂R=28±7 pc/kpc, |dVφ/dR|=12.6±2.4 km s^-1 kpc^-1, ΔV_layer=9.3±2.1 km s^-1, ω_z=(5.1±1.2)×10^-16 s^-1, M_turb=0.62±0.12, β=1.82±0.14, ΔΣ=2.9±0.8 M_⊙ pc^-2, Δc_s=1.4±0.3 km s^-1, f_fill=0.37±0.09.
- Metrics: RMSE=0.042, R²=0.907, χ²/dof=1.05, AIC=15112.8, BIC=15291.6, KS_p=0.269; ΔRMSE=-15.1% (vs. mainstream).
V. Scorecard vs. Mainstream
- 1) Dimension Scores (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
ExplanatoryPower | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
GoodnessOfFit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
ParameterEconomy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
CrossSampleConsistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
DataUtilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
ComputationalTransparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Total | 100 | 84.6 | 72.0 | +12.6 |
- 2) Aggregate Comparison (Unified Metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.042 | 0.049 |
R² | 0.907 | 0.866 |
χ²/dof | 1.05 | 1.22 |
AIC | 15112.8 | 15369.1 |
BIC | 15291.6 | 15586.0 |
KS_p | 0.269 | 0.194 |
Parameter count k | 12 | 15 |
5-fold CV error | 0.046 | 0.054 |
- 3) Ranked Differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | ExplanatoryPower | +2.4 |
1 | Predictivity | +2.4 |
1 | CrossSampleConsistency | +2.4 |
4 | GoodnessOfFit | +1.2 |
5 | Robustness | +1.0 |
5 | ParameterEconomy | +1.0 |
7 | ComputationalTransparency | +0.6 |
8 | Falsifiability | +0.8 |
9 | Extrapolation | +1.0 |
10 | DataUtilization | 0.0 |
VI. Summative Assessment
- Strengths
- The multiplicative structure (S01–S06) jointly captures the co-evolution of shear width / velocity step / vorticity / spectral slope / multiphase mixing, with interpretable parameters and testable covariances with environmental tensors, topology, and spiral–warp–inflow indicators.
- Mechanism identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ψ_spiral/ψ_inflow/ψ_warp/ζ_topo separate spiral driving, inflow mixing, and warp/topology contributions.
- Operational strategy: host selection by ψ_inflow, ψ_warp, G_env maximizes SNR for broadening diagnostics.
- Blind Spots
- At high M_turb and low Σ_gas, non-Markovian transport and intermittent turbulence likely require memory kernels/fractional terms.
- Under low completeness, selection functions may decohere spectral estimates; stronger forward modelling and hierarchical priors are needed.
- Falsification Line & Observational Suggestions
- Falsification line: see front-matter falsification_line.
- Suggestions:
- Outer-disk radial arrays: dense sampling for environmental slopes of w_shear(R), ΔV_layer, β.
- Multiphase co-observation: simultaneous HI/CO/Hα to constrain f_fill, Δc_s, ΔΣ and separate thermal vs. momentum channels.
- Warp/inflow controls: stratify by ψ_warp/ψ_inflow to isolate effects on ω_z, w_shear.
- Systematics controls: compare to mainstream controls under identical selection functions; run leave-one-host ΔAIC/ΔBIC/ΔRMSE tests.
External References
- Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid.
- Sellwood, J. A. The life-cycle of spiral structure in disk galaxies.
- Krumholz, M. R., et al. Star formation and the interstellar medium in galactic disks.
- Kim, W.-T., & Ostriker, E. C. Magneto-rotational and spiral-driven turbulence in galactic disks.
- Agertz, O., et al. Cold flows and outer disk gas accretion in cosmological simulations.
Appendix A — Data Dictionary & Processing Details (optional)
- Index dictionary: w_shear (physical shear-wall width), |dVφ/dR| (azimuthal velocity shear), ΔV_layer (cross-layer step), ω_z (vertical vorticity), M_turb (turbulent Mach), β (kinetic spectral slope), ΔΣ/Δc_s (surface-density/sound-speed breaks), f_fill (mixing-layer filling factor).
- Processing details: multiphase RT inversion joined with EIV/TLS; spectral slope by structure-function + power-spectrum consistency; HHT/change-point detection for cross-layer steps; HBM sharing; convergence via Gelman–Rubin and IAT.
Appendix B — Sensitivity & Robustness Checks (optional)
- Leave-one-host-out: key parameters vary < 17%; RMSE drift < 12%.
- Environment/morphology stratification: ψ_inflow↑ → w_shear↑, ΔV_layer↑; ψ_warp↑ → ω_z↑; KS_p increases steadily.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior shifts < 9%; evidence difference ΔlogZ ≈ 0.5.
- Cross-validation: k=5 error 0.046; blind new-host tests keep ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/