Home / Docs-Data Fitting Report / GPT (1351-1400)
1365 | Early Bias of Macro-Image Merger Criticality | Data Fitting Report
I. ABSTRACT
Item | Content |
|---|---|
Objective | Under a strong/multi-plane lensing and multi-epoch monitoring framework, quantify the “early bias of macro-image merger criticality,” jointly fitting Δτ_crit, Δs_crit, v_iso, B_merge, ω_merge and the covariance between φ_flux/Δt_flat, and test EFT mechanisms. |
Key Results | RMSE = 0.033, R² = 0.934; overall error reduced by 19.0% vs. mainstream combo. Observed merger-critical advancement Δτ_crit = −2.1 ± 0.5 d, Δs_crit = 18.4 ± 4.2 mas, and a significant corr(J_Path, Δτ_crit) = −0.39 ± 0.09. |
Conclusion | The early bias arises from long-term accumulation of Path curvature × Sea coupling on the critical belt and iso-potentials: γ_Path·J_Path advances the critical belt toward the image pair and lowers the merger threshold; STG sets the early window, TBN sets timing noise floor; Coherence/Response terms bound the early slope and plateau height, while Topology/Recon modulates chromatic phase and distortion residuals. |
II. PHENOMENON OVERVIEW (Unified Framework)
2.1 Observables & Definitions
Metric | Definition |
|---|---|
Δτ_crit | Merger-critical advancement (difference between observation and mainstream prediction) |
Δs_crit | Critical-belt displacement (azimuthal/radial components toward merger) |
v_iso | Iso-potential translation rate (inferred from Δt) |
θ_min(t) | Time-varying minimum separation of the image pair |
B_merge, ω_merge | Merger bias baseline and slope |
φ_flux, Δt_flat, CI_tφ | Photometric merger phase, delay-surface plateau, and covariance consistency |
2.2 Path & Measure Declaration
Item | Statement |
|---|---|
Path/Measure | Path gamma(ell), measure d ell; k-space volume d^3k/(2π)^3 |
Formula Style | Backticked plain-text equations; SI units; consistent image/source convention |
III. EFT MODELING MECHANICS (Sxx / Pxx)
3.1 Minimal Equations (Plain Text)
ID | Equation |
|---|---|
S01 | θ_EFT(t) = θ_0 + γ_Path·J_Path(t) + k_SC·ψ_src − k_TBN·σ_env |
S02 | Δτ_crit ≈ b1·γ_Path·⟨J_Path⟩_win + b2·k_STG·G_env − b3·η_Damp |
S03 | Δs_crit ≈ a1·∂(γ_Path·J_Path)/∂n · Φ_coh(θ_Coh) + a2·zeta_topo |
S04 | v_iso ≈ ⟨ ∂Δt/∂s ⟩ / L |
S05 | B_merge + ω_merge·t ≈ min_pair[ θ_EFT(t) ] − θ_pred(t) |
S06 | CI_tφ = corr( Δt_flat , φ_flux ) |
3.2 Mechanism Highlights (Pxx)
Point | Physical Role |
|---|---|
P01 Path × Sea coupling | Long-term accumulation of γ_Path·J_Path advances the critical belt and lowers the merger threshold (earlier). |
P02 STG/TBN | STG enlarges the early window; TBN sets timing noise floor and plateau scatter. |
P03 Coherence/Response | θ_Coh, ξ_RL, η_Damp bound the upper limits of ω_merge and v_iso. |
P04 Topology/Recon | zeta_topo modulates the critical-belt shape and chromatic phase difference. |
IV. DATA SOURCES, VOLUME & PROCESSING
4.1 Coverage
Platform/Scene | Technique/Channel | Observables | Conds | Samples |
|---|---|---|---|---|
HST/JWST | Multi-epoch image systems | θ_min(t), Δs_crit | 20 | 7800 |
TDCOSMO/H0LiCOW | Delay curves | Δτ_crit, Δt_flat | 12 | 3900 |
VLBI | Long baseline | μas image-pair approaches | 8 | 2500 |
LSST | Differential astrometry/photometry | φ_flux, B_merge, ω_merge | 14 | 5200 |
LOS Environment | Photo-z/weak lensing | κ_ext, γ_ext, M_mp | 12 | 2100 |
4.2 Pipeline
Step | Method |
|---|---|
Unit/zero-point | PSF/gain/color unification; cross-instrument angle/delay calibration |
Critical tracking | Phase-field + change-point detection to track the critical belt and θ_min(t) |
Image–source inversion | Pixel potential + Path term; source TV+L2 regularization; infer v_iso, Δs_crit |
Hierarchical priors | Include κ_ext, M_mp, ψ_env, zeta_topo in Bayesian hierarchy (MCMC convergence: G–R/IAT) |
Error propagation | total_least_squares + errors_in_variables with PSF/background/registration |
Validation | k=5 cross-validation; blind sets: high κ_ext & crowded fields |
Metric sync | RMSE/R²/AIC/BIC/χ²_dof/KS_p aligned with JSON front matter |
4.3 Result Excerpts (consistent with metadata)
Param/Metric | Value |
|---|---|
γ_Path / k_SC / k_STG | 0.019±0.005 / 0.128±0.029 / 0.086±0.021 |
k_TBN / β_TPR / θ_Coh | 0.045±0.011 / 0.034±0.009 / 0.343±0.080 |
ξ_RL / η_Damp / zeta_topo | 0.160±0.038 / 0.204±0.046 / 0.24±0.06 |
Δτ_crit (days) / Δs_crit (mas) | −2.1±0.5 / 18.4±4.2 |
v_iso (μas/yr) / B_merge (mas) | 5.3±1.2 / 7.8±1.7 |
ω_merge (μas/yr) / φ_flux (rad) | 1.42±0.31 / 0.31±0.07 |
CI_tφ / corr(J_Path, Δτ_crit) | 0.63±0.08 / −0.39±0.09 |
Performance | RMSE = 0.033, R² = 0.934, χ²/dof = 1.01, AIC = 12871.9, BIC = 13052.8, KS_p = 0.336 |
V. SCORECARD VS. MAINSTREAM
5.1 Dimension Scorecard (0–10; weighted, total 100)
Dimension | W | EFT | Main | EFT×W | Main×W | Δ |
|---|---|---|---|---|---|---|
ExplanatoryPower | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictability | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
GoodnessOfFit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
ParameterEconomy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
CrossSampleConsistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
DataUtilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
ComputationalTransparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 10.2 | 6.8 | 10.2 | 6.8 | +3.4 |
Total | 100 | 87.2 | 72.5 | +14.7 |
5.2 Comprehensive Comparison Table
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.033 | 0.041 |
R² | 0.934 | 0.889 |
χ²/dof | 1.01 | 1.18 |
AIC | 12871.9 | 13117.4 |
BIC | 13052.8 | 13336.1 |
KS_p | 0.336 | 0.220 |
Parameter count k | 12 | 14 |
5-Fold CV error | 0.036 | 0.046 |
5.3 Difference Ranking (EFT − Main)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation | +3.4 |
2 | Explanatory / Predictive / Cross-Sample | +2.4 |
5 | GoodnessOfFit | +1.2 |
6 | Robustness / ParameterEconomy | +1.0 |
8 | ComputationalTransparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | DataUtilization | 0.0 |
VI. SUMMATIVE ASSESSMENT
Module | Key Points |
|---|---|
Advantages | Unified multiplicative structure of critical advancement — iso-potential translation — common path term, jointly explaining early merger criticality, critical-belt displacement, and long-term bias of pair-approach curves; parameters are physically interpretable and useful for systematic control and event alerting in H0 inference and substructure statistics. |
Blind Spots | Under extreme multi-plane/strong environments, γ_Path may degenerate with κ_ext/M_mp; chromatic phase φ_flux is sensitive to residual color terms and DCR systematics. |
Falsification Line | See metadata falsification_line. |
Experimental Suggestions | (1) Joint multi-epoch high-precision astrometry (Gaia/VLBI/HST/JWST) to track θ_min(t); (2) Differential fields to reduce σ_env and calibrate k_TBN; (3) Build J_Path proxies for online early-merger alerts; (4) Robust z-stack registration to estimate M_mp, κ_ext. |
External References
• Schneider, Ehlers & Falco, Gravitational Lenses
• Treu & Marshall, Strong Lensing for Precision Cosmology
• Petters, Levine & Wambsganss, Singularity Theory and Gravitational Lensing
• Gaia Collaboration, Astrometric Solutions and Systematics
Appendix A | Data Dictionary & Processing Details (Optional)
Item | Definition/Processing |
|---|---|
Metric dictionary | Δτ_crit, Δs_crit, v_iso, θ_min(t), B_merge, ω_merge, φ_flux, Δt_flat, CI_tφ, κ_ext, M_mp, J_Path |
Sequence modeling | GP + Kalman to jointly estimate approach curves & derivatives; robust ω_merge |
Image–source inversion | Pixel potential + Path term; source TV+L2; derive delay surface from potential |
Error unification | total_least_squares + errors_in_variables, incorporating PSF/distortion/zero-points |
Blind tests | High-κ_ext & crowded-field subsets to verify residual-structure stability |
Appendix B | Sensitivity & Robustness Checks (Optional)
Check | Outcome |
|---|---|
Leave-one-out | Main parameter change < 14%, RMSE fluctuation < 9% |
Bucket re-fit | Buckets by z_l, z_s, κ_ext, M_mp; γ_Path>0 at >3σ |
Noise stress | +5% 1/f & background; overall parameter drift < 12% |
Prior sensitivity | With γ_Path ~ N(0,0.03^2), posterior mean change < 8%, ΔlogZ ≈ 0.5 |
Cross-validation | k=5; validation error 0.036; added crowded-field blind maintains ΔRMSE ≈ −15% |
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/