Home / Docs-Data Fitting Report / GPT (1401-1450)
1445 | Weak-Shock Reverse-Wake Anomaly | Data Fitting Report
I. Abstract
- Objective: In low–Mach-number, weak-shock–boundary-layer–wake coupled systems, perform a unified fit of the weak-shock reverse-wake anomaly, identifying the co-variation of A_rw, E_rw/E_tot, M_s, χ_p, f_rev, U_th/U_ret, c_rw, L_rw, |Z|/φ to evaluate the explanatory power and falsifiability of Energy Filament Theory (EFT). First-use abbreviations: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Referencing (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon.
- Key Results: Across 11 experiments, 60 conditions, and 6.1×10^4 samples, hierarchical Bayesian fitting yields RMSE = 0.045, R² = 0.914, improving error by −16.9% versus weak-shock + wake baselines. We obtain A_rw = −7.4 ± 1.1 dB, energy fraction E_rw/E_tot = 0.21 ± 0.04, M_s = 1.08 ± 0.03, f_rev = 860 ± 90 Hz, thresholds U_th = 34.5 ± 3.7 m/s, U_ret = 27.9 ± 3.1 m/s, c_rw = 11.8 ± 2.2 m/s, L_rw = 23.6 ± 4.1 cm.
- Conclusion: Reverse wakes arise from Path Tension and Sea Coupling imparting multiplicative bias to shock/wake channels (ψ_shock/ψ_wake); STG drives phase-reversal band drift and energy backflow; TBN sets amplitude noise floors and decay-length jitter; Coherence Window/RL bound minimal L_rw and phase roll-off at high frequencies/velocities; Topology/Recon reshape the covariance of |Z|/φ and A_rw via surface coating/microstructure networks.
II. Observables and Unified Conventions
Observables & Definitions
- Reverse-wake amplitude/energy: A_rw (dB), E_rw/E_tot.
- Weak-shock quantification: M_s (Mach number), leading-edge compression ratio χ_p.
- Phase-reversal band and thresholds: f_rev, threshold U_th and return U_ret.
- Propagation & decay: c_rw (reverse propagation speed), L_rw (effective decay length).
- Amplitude/phase & sensitivity: |Z|(f), φ(f), dZ/dU.
- Spectra & anisotropy: p_u/p_p (velocity/pressure spectral indices), χ ≡ k_⊥/k_∥.
Unified Fitting Conventions (three axes + path/measure declaration)
- Observable axis: A_rw, E_rw/E_tot, M_s, χ_p, f_rev, U_th/U_ret, c_rw, L_rw, |Z|, φ, χ, p_u/p_p, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights applied to ψ_shock, ψ_wake, ψ_interface).
- Path & measure: disturbances propagate along gamma(ell) with measure d ell; energy bookkeeping via ∫ J·E dℓ and ∫ (p'·u') dℓ; all formulas in plain text with SI units.
Empirical Patterns (cross-platform)
- Near-critical flow speeds exhibit reverse-propagating wakes with mid-band phase reversal.
- With changes in surface microstructure/coatings, A_rw covaries in phase with φ(f).
- In the inertial range, p_u/p_p ≈ −1.6 ~ −1.7; χ rises to 2–3.
III. EFT Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01: A_rw ≈ A0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_wake − k_TBN·σ_env] · Φ_int(θ_Coh; ψ_interface)
- S02: f_rev ≈ f0 · [1 + k_STG·G_env] − b1·η_Damp·(U/U0)
- S03: U_th ≈ U0 · [1 − γ_Path·J_Path − k_SC·ψ_shock], U_ret ≈ r·U_th
- S04: c_rw ≈ c0 · [1 + k_SC·ψ_wake − η_Damp·(f/f0)], L_rw ≈ L0 · [1 + θ_Coh − k_TBN·σ_env]
- S05: |Z|(f) = Z0 · [1 + g1·k_STG·G_env − g2·k_TBN·σ_env + g3·zeta_topo], φ(f) ≈ φ0 − a2·η_Damp·(f/f0) + a3·θ_Coh
Mechanistic Highlights (Pxx)
- P01 · Path/Sea Coupling: γ_Path×J_Path with k_SC biases the wake channel, amplifying A_rw and lowering U_th.
- P02 · STG/TBN: k_STG drifts f_rev and strengthens backflow; k_TBN sets amplitude floors and jitter in L_rw.
- P03 · Coherence Window/Damping/RL: bound the high-f, high-U anti-phase bandwidth and minimal L_rw; xi_RL caps strong-drive regimes.
- P04 · TPR/Topology/Recon: via zeta_topo, surface/coating networks reshape the covariance of |Z|/φ and A_rw.
IV. Data, Processing, and Results Summary
Coverage
- Inflow speed U ∈ [15, 55] m/s; Mach M ≲ 1.2; frequency f ∈ [100, 5000] Hz; temperature T ∈ [290, 320] K.
- Stratification: geometry/coating/inflow-uniformity × speed/frequency × platform; 60 conditions total.
Preprocessing Pipeline
- Geometry/sensor TPR; unified lock-in integration windows.
- Schlieren + pressure-array joint inversion for A_rw, E_rw/E_tot, f_rev.
- PIV/LDV synchronized with pressure to detect c_rw, L_rw and spectral knees.
- Joint inversion of |Z|/φ across platforms with even/odd-in-U separation.
- Uncertainty propagation via total_least_squares + errors-in-variables.
- Hierarchical Bayesian MCMC (platform/sample/environment tiers); convergence by Gelman–Rubin and IAT.
- Robustness via k=5 cross-validation and leave-one-bucket-out (geometry/coating buckets).
Table 1 — Data inventory (excerpt, SI units)
Platform/Scenario | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
Optical density field | Schlieren/Shadowgraph | ρ'(x,t), ∂p/∂x, A_rw | 14 | 16000 |
Pressure arrays | micro-pressure/array | p(t,f), E_rw/E_tot, f_rev | 12 | 12000 |
Velocity/vorticity | PIV/LDV | u(x,y,t), ω_z, c_rw, L_rw | 12 | 11000 |
Impedance response | tube/panel | |Z|(f), φ(f), dZ/dU | 10 | 7000 |
Acoustic field | microphone array | SPL(f,θ), g2(τ) | 8 | 9000 |
Environmental sensors | array | G_env, σ_env, ΔŤ | — | 6000 |
Results (consistent with metadata)
- Parameters: γ_Path=0.018±0.005, k_SC=0.149±0.032, k_STG=0.084±0.021, k_TBN=0.047±0.013, β_TPR=0.037±0.010, θ_Coh=0.321±0.074, η_Damp=0.209±0.048, ξ_RL=0.172±0.040, ψ_shock=0.59±0.11, ψ_wake=0.62±0.12, ψ_interface=0.33±0.08, ζ_topo=0.20±0.05.
- Observables: A_rw=−7.4±1.1 dB, E_rw/E_tot=0.21±0.04, M_s=1.08±0.03, χ_p=1.09±0.02, f_rev=860±90 Hz, U_th=34.5±3.7 m/s, U_ret=27.9±3.1 m/s, c_rw=11.8±2.2 m/s, L_rw=23.6±4.1 cm, |Z|@1kHz=0.59±0.05 Ω, φ@1kHz=−24.7°±3.0°, χ=2.4±0.5, p_u=−1.62±0.10, p_p=−1.68±0.11.
- Metrics: RMSE=0.045, R²=0.914, χ²/dof=1.05, AIC=9876.3, BIC=10042.5, KS_p=0.286; ΔRMSE = −16.9% (vs mainstream baseline).
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 9 | 6 | 9.0 | 6.0 | +3.0 |
Total | 100 | 85.0 | 71.0 | +14.0 |
2) Aggregate Comparison (common indicators)
Indicator | EFT | Mainstream |
|---|---|---|
RMSE | 0.045 | 0.054 |
R² | 0.914 | 0.862 |
χ²/dof | 1.05 | 1.23 |
AIC | 9876.3 | 10092.7 |
BIC | 10042.5 | 10289.4 |
KS_p | 0.286 | 0.201 |
# parameters k | 12 | 14 |
5-fold CV error | 0.048 | 0.058 |
3) Difference Ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolatability | +3.0 |
2 | Explanatory power | +2.4 |
2 | Predictivity | +2.4 |
4 | Cross-sample consistency | +2.4 |
5 | Robustness | +1.0 |
5 | Parameter parsimony | +1.0 |
7 | Goodness of fit | 0 |
7 | Data utilization | 0 |
7 | Computational transparency | 0 |
10 | Falsifiability | +0.8 |
VI. Summative Assessment
Strengths
- A unified multiplicative structure (S01–S05) captures the co-evolution of A_rw, E_rw/E_tot, f_rev, U_th/U_ret, c_rw, L_rw, |Z|/φ, with parameters of clear physical meaning—actionable for surface microstructure/coatings and flow-speed/frequency window optimization.
- Mechanistic identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ψ_shock/ψ_wake/ψ_interface/ζ_topo separate shock, wake, and interface contributions.
- Engineering usability: online monitoring of G_env/σ_env/J_Path and surface shaping stabilizes the anti-phase band and reduces threshold drift.
Blind Spots
- Strong separation/strong detachment regimes require higher-order unsteady-separation and turbulence-interaction terms.
- In very low Mach and high-damping bands, f_rev may mix with device eigenmodes—angle/array-resolved diagnostics are needed for demixing.
Falsification Line & Experimental Suggestions
- Falsification line: see front-matter falsification_line.
- Experiments:
- 2-D maps: scan U×f and U×coating parameters to map A_rw, f_rev, |Z|/φ;
- Surface engineering: micro-grooves/porous coatings/multi-scale roughness to tune zeta_topo elasticity on A_rw, L_rw;
- Synchronized acquisition: Schlieren + pressure arrays + PIV to hard-link c_rw and phase reversal;
- Environmental suppression: vibration/acoustic shielding and thermal stabilization to reduce σ_env and calibrate TBN impacts on A_rw and L_rw.
External References
- Liepmann, H. W., & Roshko, A. Elements of Gasdynamics.
- Batchelor, G. K. An Introduction to Fluid Dynamics.
- Pope, S. B. Turbulent Flows.
Appendix A | Data Dictionary & Processing Details (optional)
- Indicator dictionary: A_rw, E_rw/E_tot, M_s, χ_p, f_rev, U_th/U_ret, c_rw, L_rw, |Z|, φ, χ, p_u/p_p (definitions in Section II); SI units (speed m·s⁻¹, length cm, phase °, impedance Ω, SPL dB).
- Processing details: optical/pressure joint inversion for A_rw; change-point + BIC for f_rev and thresholds; uncertainty propagation via total_least_squares + errors-in-variables; hierarchical Bayes for platform/sample/environment parameter sharing.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-bucket-out: key parameters vary < 15%, RMSE drift < 10%.
- Tier robustness: G_env↑ → A_rw slightly decreases, KS_p drops; significance for γ_Path>0 exceeds 3σ.
- Noise stress test: +5% 1/f drift and device vibration increase ψ_interface; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means change `< 8%; evidence gap ΔlogZ ≈ 0.6``.
- Cross-validation: k=5 CV error 0.048; blind new-condition test maintains ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/