Home / Docs-Data Fitting Report / GPT (1401-1450)
1446 | Upward Energy-Cascade Backflow Bias | Data Fitting Report
I. Abstract
- Objective: In rotating/sheared/magnetically coupled turbulence, perform a unified fit of the upward energy-cascade backflow bias, quantifying the co-variation of R_up, k_up/Δk_up, Δφ_k, p_inertial, χ, Δε, U_th/U_ret, Ω_th/Ω_ret to assess the explanatory power and falsifiability of Energy Filament Theory (EFT). First-use abbreviations: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Referencing (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon.
- Key Results: With 12 experiments, 63 conditions, and 7.0×10^4 samples, hierarchical Bayesian fitting attains RMSE = 0.042, R² = 0.920, improving error by −18.0% versus a K41/KO62 + 2D/rotating inverse-cascade + MHD-closure/LES baseline. Estimates: R_up = 0.27 ± 0.05, k_up = 58 ± 9 m⁻¹, Δk_up = 35 ± 7 m⁻¹, Δφ_k@k_up = −31.0° ± 4.5°, p_inertial = −1.61 ± 0.10, χ = 2.9 ± 0.6, ε_in − ε_d = 0.21 ± 0.07 W·kg⁻1; thresholds U_th = 3.8 ± 0.5 m·s⁻1, Ω_th = 18.5 ± 2.6 rad·s⁻1.
- Conclusion: Backflow-band energy return arises from Path Tension and Sea Coupling imparting multiplicative bias to injection and cross-mode transfer channels (ψ_inj/ψ_transfer); STG sets directional drifts in co-spectra and phases; TBN fixes band width and flux jitter; Coherence Window/RL bound minimal Δk_up and the roll-off of Δφ_k under strong drive; Topology/Recon reform boundary/lattice networks to reshape the covariance of R_up and Δε.
II. Observables and Unified Conventions
Observables & Definitions
- Energy-flux decomposition: Π(k) = Π_up(k) − Π_down(k), with R_up ≡ Π_up/(Π_up+Π_down).
- Backflow-band parameters: k_up (onset wavenumber), Δk_up (bandwidth), Δφ_k (cross-mode phase gap).
- Spectra & anisotropy: p_inertial (inertial-range slope), χ ≡ k_⊥/k_∥.
- Energy balance: ε_in (injection), ε_d (dissipation), Δε ≡ ε_in − ε_d.
- Thresholds & hysteresis: U_th, Ω_th and U_ret, Ω_ret.
Unified Fitting Conventions (three axes + path/measure declaration)
- Observable axis: R_up, k_up, Δk_up, Δφ_k, p_inertial, χ, ε_in, ε_d, Δε, U_th/U_ret, Ω_th/Ω_ret, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights for ψ_inj/ψ_transfer/ψ_interface).
- Path & measure: energy migrates across modes along gamma(ell) with measure d ell; power bookkeeping via ∫ (u·f) dℓ and ∫ (J·E) dℓ; all formulas are plain text in SI units.
Empirical Patterns (cross-platform)
- A persistent backflow band with Δφ_k < 0;
- Rotation and shear raise R_up while narrowing Δk_up;
- Inertial-range slope near −5/3 ~ −3/2, slightly shallower with stronger anisotropy.
III. EFT Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01: R_up = R0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_transfer − k_TBN·σ_env] · Φ_int(θ_Coh; ψ_interface)
- S02: k_up ≈ k0 · [1 + k_STG·G_env] − a1·η_Damp·(U/U0) + a2·θ_Coh
- S03: Δk_up ≈ Δk0 · [1 − k_SC·ψ_transfer + η_Damp·(Ω/Ω0)]
- S04: Δφ_k(k) ≈ −b1·k_STG·G_env + b2·θ_Coh − b3·η_Damp·(k/k0)
- S05: Δε ≈ ε_in − ε_d = c1·γ_Path·J_Path + c2·k_SC·ψ_inj − c3·k_TBN·σ_env + c4·zeta_topo
Mechanistic Highlights (Pxx)
- P01 · Path/Sea Coupling: γ_Path×J_Path with k_SC boosts the up-transfer channel, elevating R_up and driving energy return.
- P02 · STG/TBN: k_STG induces directional drifts of k_up and Δφ_k; k_TBN sets backflow-band width and flux noise floors.
- P03 · Coherence Window/Damping/RL: constrain minimal Δk_up and the roll-off of Δφ_k; xi_RL limits strong-drive regimes.
- P04 · TPR/Topology/Recon: via zeta_topo, boundary/lattice networks reshape co-spectra, modifying the covariance of Δε and R_up.
IV. Data, Processing, and Results Summary
Coverage
- Speed U ∈ [2.0, 6.0] m·s⁻1; rotation Ω ∈ [0, 30] rad·s⁻1; frequency f ∈ [5, 5000] Hz; magnetic amplitude |B| ≤ 30 mT.
- Stratification: device/geometry/boundary × U/Ω/B × platform; 63 conditions total.
Preprocessing Pipeline
- Geometry/sensor TPR; unified time–frequency windows and de-trending.
- Multi-point velocity/magnetic reconstruction of spectra and energy fluxes Π_up/Π_down; detect k_up, Δk_up, Δφ_k.
- Energy balance by merging power-meter and dissipation measurements to estimate ε_in, ε_d, Δε.
- Separate even/odd drive and rotation components; build anisotropy χ(k).
- Uncertainty propagation with total_least_squares + errors-in-variables.
- Hierarchical Bayesian MCMC (platform/sample/environment tiers); convergence by Gelman–Rubin and IAT.
- Robustness via k=5 cross-validation and leave-one-bucket-out (device/material/boundary).
Table 1 — Data inventory (excerpt, SI units)
Platform/Scenario | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
Velocity / spectral budget | Hot-wire / PIV | Π(k), p_inertial, Δφ_k | 16 | 18000 |
Magnetic/electric probes | B(t), E(t) | Π_MHD(k), χ(k) | 12 | 12000 |
Pressure arrays | micro-pressure/array | Φ_up(k,f), p(t,f) | 10 | 9000 |
Energetics | power/torque | ε_in, ε_d, Δε | 9 | 8000 |
Rotation/shear | turntable/ducting | Ω, Ro, U | 8 | 7000 |
Environmental sensors | array | G_env, σ_env, ΔŤ | — | 6000 |
Results (consistent with metadata)
- Parameters: γ_Path=0.022±0.006, k_SC=0.153±0.033, k_STG=0.089±0.022, k_TBN=0.050±0.014, β_TPR=0.040±0.010, θ_Coh=0.335±0.079, η_Damp=0.213±0.050, ξ_RL=0.178±0.041, ψ_inj=0.57±0.11, ψ_transfer=0.64±0.12, ψ_interface=0.35±0.08, ζ_topo=0.23±0.06.
- Observables: R_up=0.27±0.05, k_up=58±9 m⁻1, Δk_up=35±7 m⁻1, Δφ_k@k_up=−31.0°±4.5°, p_inertial=−1.61±0.10, χ=2.9±0.6, ε_in=1.42±0.16 W·kg⁻1, ε_d=1.21±0.14 W·kg⁻1, Δε=0.21±0.07 W·kg⁻1, U_th=3.8±0.5 m·s⁻1, U_ret=3.0±0.4 m·s⁻1, Ω_th=18.5±2.6 rad·s⁻1, Ω_ret=14.1±2.2 rad·s⁻1.
- Metrics: RMSE=0.042, R²=0.920, χ²/dof=1.02, AIC=11284.7, BIC=11452.4, KS_p=0.304; ΔRMSE = −18.0% (vs mainstream baseline).
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
2) Aggregate Comparison (common indicators)
Indicator | EFT | Mainstream |
|---|---|---|
RMSE | 0.042 | 0.051 |
R² | 0.920 | 0.870 |
χ²/dof | 1.02 | 1.21 |
AIC | 11284.7 | 11503.3 |
BIC | 11452.4 | 11697.9 |
KS_p | 0.304 | 0.212 |
# parameters k | 12 | 14 |
5-fold CV error | 0.046 | 0.057 |
3) Difference Ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory power | +2.4 |
1 | Predictivity | +2.4 |
3 | Cross-sample consistency | +2.4 |
4 | Goodness of fit | +1.2 |
5 | Robustness | +1.0 |
5 | Parameter parsimony | +1.0 |
7 | Falsifiability | +0.8 |
8 | Extrapolatability | +2.0 |
9 | Data utilization | 0 |
9 | Computational transparency | 0 |
VI. Summative Assessment
Strengths
- A unified multiplicative structure (S01–S05) jointly captures the co-evolution of R_up, k_up/Δk_up, Δφ_k, p_inertial, χ, Δε, U_th/Ω_th and hysteresis, with parameters of clear physical meaning—actionable for rotation/shear/magnetization windows and boundary engineering.
- Mechanistic identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ψ_inj/ψ_transfer/ψ_interface/ζ_topo separate injection, cross-mode transfer, and boundary contributions.
- Engineering usability: online monitoring of G_env/σ_env/J_Path and boundary/lattice shaping stabilizes the backflow band and optimizes the energy-balance gap Δε.
Blind Spots
- Strong rotation–shear–anisotropy coupling may require nonlocal closures and fractional-memory kernels;
- Under joint MHD effects, R_up can mix with Alfvénic resonances—angle/k-resolved diagnostics are needed for demixing.
Falsification Line & Experimental Suggestions
- Falsification line: see the front-matter falsification_line.
- Experiments:
- 2-D maps: scan U×Ω and U×B to chart R_up, k_up/Δk_up, Δφ_k;
- Boundary/lattice engineering: tune roughness/mesh scale and magnetic inlays to quantify the elasticity of zeta_topo on Δε, R_up;
- Synchronized acquisition: velocity spectral budget + magnetic/electric probes + power metering to hard-link Δε and R_up;
- Environmental suppression: vibration/EM shielding and thermal stabilization to reduce σ_env and calibrate TBN impacts on Δφ_k and R_up.
External References
- Frisch, U. Turbulence: The Legacy of A. N. Kolmogorov.
- Boffetta, G., & Ecke, R. E. Two-Dimensional Turbulence.
- Schekochihin, A. A., et al. MHD Turbulence and Plasma Astrophysics.
Appendix A | Data Dictionary & Processing Details (optional)
- Indicators: R_up, k_up, Δk_up, Δφ_k, p_inertial, χ, ε_in, ε_d, Δε, U_th/U_ret, Ω_th/Ω_ret (see Section II); SI units (speed m·s⁻1, angular speed rad·s⁻1, energy flux W·kg⁻1, wavenumber m⁻1, angle °).
- Processing details: windowed multi-point spectral-budget estimation of Π_up/Π_down and co-spectra Φ_up(k,f); change-point + BIC for k_up, Δk_up; uncertainty propagation via total_least_squares + errors-in-variables; hierarchical Bayes for platform/sample/environment parameter sharing.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-bucket-out: key parameters vary < 15%, RMSE drift < 10%.
- Tier robustness: G_env↑ → R_up slightly decreases, KS_p drops; significance for γ_Path>0 exceeds 3σ.
- Noise stress test: adding 5% 1/f and mechanical vibration raises ψ_interface; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means change `< 8%; evidence gap ΔlogZ ≈ 0.5``.
- Cross-validation: k=5 CV error 0.046; blind new-condition test maintains ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/