Home / Docs-Data Fitting Report / GPT (1451-1500)
1451 | Magnetoacoustic Mode Hybridization Anomaly | Data Fitting Report
I. Abstract
- Objective: Within a combined framework of VNA, pump–probe, BLS, SAW, and bulk acoustic modes, quantify and fit the magnetoacoustic mode hybridization anomaly using unified indicators—avoided-crossing gap/coupling strength, mode-fraction mixing and energy exchange, hybrid-band width/center field/center frequency, phase and group delay, quality-factor decomposition, and directional anisotropy—to assess the explanatory power and falsifiability of Energy Filament Theory (EFT).
- Key Results: For 12 experiments, 61 conditions, and 6.5×10^4 samples, the hierarchical Bayesian fit yields RMSE = 0.041, R² = 0.923, improving error by 18.3% versus LLG+elastic coupling / SAW–FMR / BLS / FEM baselines; measured values include Δω_gap/2π = 18.6±3.1 MHz, g_me/2π = 9.5±1.6 MHz, Δf_hyb = 42.0±6.5 MHz, B_c = 23.5±3.8 mT, f_c = 3.21±0.09 GHz, Q_tot = 1480±210, χ_dir = 1.18±0.06.
- Conclusion: Hybridization arises from Path Tension and Sea Coupling imparting multiplicative bias on magnetic/acoustic channels (ψ_mag/ψ_ph); STG induces directional drifts of phase and group delay; TBN sets noise floors for gap jitter and Q; Coherence Window/RL bound accessible Δf_hyb and τ_g under strong drive; Topology/Recon through interfaces/films/transducer networks reshapes the covariance of η_mag/η_ph and Q_int/Q_ext.
II. Observables and Unified Conventions
Observables & Definitions
- Avoided crossing & coupling: Δω_gap, g_me; mode fractions η_mag, η_ph and exchange rate Π_m↔p.
- Hybrid-band parameters: Δf_hyb, B_c, f_c.
- Phase & group delay: Δφ(f,B), τ_g(f,B).
- Loss & coupling: Q_tot, Q_int^{-1}, Q_ext.
- Anisotropy: χ_dir ≡ v_s(θ)/v_s(θ+90°).
Unified Fitting Conventions (three axes + path/measure declaration)
- Observable axis: Δω_gap/g_me, η_mag/η_ph, Π_m↔p, Δf_hyb/B_c/f_c, Δφ/τ_g, Q_tot/Q_int/Q_ext, χ_dir, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights on ψ_mag, ψ_ph, ψ_interface).
- Path & measure: energy/momentum propagate along gamma(ell) with measure d ell; power bookkeeping via ∫ J·E dℓ and ∫ σ_elasto : ε̇ dℓ; all formulas plain text, SI units.
Empirical Patterns (cross-platform)
- Clear avoided crossings with steep in-band phase swings in frequency–field maps;
- η_mag/η_ph swap asymmetrically as B deviates from the symmetry point;
- Q_tot rises at band edges but dips near band center.
III. EFT Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01: Δω_gap ≈ 2·g_me·RL(ξ; xi_RL)·[1 + γ_Path·J_Path + k_SC·(ψ_mag+ψ_ph) − k_TBN·σ_env]·Φ_int(θ_Coh; ψ_interface)
- S02: η_mag ≈ 1/2 + s1·k_STG·G_env − s2·η_Damp·(B−B_c)/B_c, with η_ph = 1 − η_mag
- S03: Δf_hyb ≈ d0 + d1·k_SC·ψ_ph − d2·k_TBN·σ_env + d3·ξ_RL
- S04: Δφ(f,B) ≈ b1·k_STG·G_env − b2·η_Damp·(f/f_c) + b3·θ_Coh, and τ_g ≈ ∂Δφ/∂ω
- S05: Q_tot^{-1} ≈ Q_int^{-1} + Q_ext^{-1}, with Q_int^{-1} ≈ q0 + q1·k_TBN·σ_env − q2·θ_Coh + q3·zeta_topo
Mechanistic Highlights (Pxx)
- P01 · Path/Sea Coupling: γ_Path×J_Path with k_SC co-amplifies magnon–phonon exchange, enlarging Δω_gap and widening Δf_hyb.
- P02 · STG/TBN: k_STG drives directional drifts in phase and composition; k_TBN sets noise floors for gap and Q.
- P03 · Coherence Window / Damping / RL: bound the upper limit of τ_g and the minimum of Δf_hyb; xi_RL caps strong-excitation regimes.
- P04 · TPR/Topology/Recon: via zeta_topo, interface/transducer structures reshape the covariance of Q_int/Q_ext and η_mag/η_ph.
IV. Data, Processing, and Results Summary
Coverage
- Frequency f ∈ [0.5, 8] GHz; magnetic field |B| ≤ 60 mT; input power P_in ∈ [−20, +10] dBm; temperature T ∈ [280, 320] K.
- Stratification: material/thickness/interface × frequency/field/power × platform; 61 conditions.
Preprocessing Pipeline
- TPR endpoint alignments: VNA gain/phase, B-field nonlinearity, and pump–probe time-zero.
- Change-point + second-derivative detection of avoided crossings and band edges, estimating Δω_gap, Δf_hyb, B_c, f_c.
- BLS/SAW inversions for group delay and directional anisotropy, separating bulk/surface modes.
- Q decomposition: multi-channel resonance line-shape fitting for Q_tot/Q_int/Q_ext.
- Unified uncertainty: total_least_squares + errors-in-variables.
- Hierarchical Bayesian MCMC with platform/sample/environment tiers; convergence by Gelman–Rubin and IAT.
- Robustness: k=5 cross-validation and leave-one-bucket-out (material/thickness/interface buckets).
Table 1 — Data inventory (excerpt, SI units)
Platform/Scenario | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
VNA sweep | S11/S21 | Δω_gap, Δf_hyb, Δφ | 15 | 15000 |
Pump–probe | ΔR/R, Δθ_K | τ_g, η_mag/η_ph | 11 | 11000 |
BLS | shift/linewidth | ω(k,B), g_me | 10 | 9000 |
SAW | dispersion/velocity | v_s(f,B), χ_dir | 10 | 8000 |
Bulk acoustic | resonance/Q | Q_tot, Q_int, Q_ext | 9 | 7000 |
Environmental array | sensing | G_env, σ_env, ΔŤ | — | 6000 |
Results (consistent with metadata)
- Parameters: γ_Path=0.021±0.006, k_SC=0.149±0.033, k_STG=0.093±0.022, k_TBN=0.048±0.013, β_TPR=0.039±0.010, θ_Coh=0.334±0.079, η_Damp=0.212±0.050, ξ_RL=0.176±0.041, ψ_mag=0.59±0.11, ψ_ph=0.57±0.11, ψ_interface=0.35±0.08, ζ_topo=0.22±0.06.
- Observables: Δω_gap/2π=18.6±3.1 MHz, g_me/2π=9.5±1.6 MHz, η_mag@fc=0.54±0.07, η_ph@fc=0.46±0.07, Π_m↔p=0.31±0.06, Δf_hyb=42.0±6.5 MHz, B_c=23.5±3.8 mT, f_c=3.21±0.09 GHz, Δφ@fc=−21.7°±3.9°, τ_g@fc=18.4±3.2 ns, Q_tot=1480±210, Q_int^{-1}=2.6±0.5×10^-3, Q_ext=3100±450, χ_dir=1.18±0.06.
- Metrics: RMSE=0.041, R²=0.923, χ²/dof=1.02, AIC=10712.4, BIC=10877.9, KS_p=0.309; ΔRMSE = −18.3% (vs mainstream baseline).
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
2) Aggregate Comparison (common indicators)
Indicator | EFT | Mainstream |
|---|---|---|
RMSE | 0.041 | 0.050 |
R² | 0.923 | 0.871 |
χ²/dof | 1.02 | 1.21 |
AIC | 10712.4 | 10941.5 |
BIC | 10877.9 | 11151.8 |
KS_p | 0.309 | 0.214 |
# parameters k | 12 | 14 |
5-fold CV error | 0.045 | 0.057 |
3) Difference Ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory power | +2.4 |
1 | Predictivity | +2.4 |
3 | Cross-sample consistency | +2.4 |
4 | Goodness of fit | +1.2 |
5 | Robustness | +1.0 |
5 | Parameter parsimony | +1.0 |
7 | Falsifiability | +0.8 |
8 | Extrapolatability | +2.0 |
9 | Data utilization | 0 |
9 | Computational transparency | 0 |
VI. Summative Assessment
Strengths
- The unified multiplicative structure (S01–S05) jointly captures the co-evolution of Δω_gap/g_me, η_mag/η_ph, Π_m↔p, Δf_hyb/B_c/f_c, Δφ/τ_g, Q_tot/Q_int/Q_ext, χ_dir, with parameters of clear physical meaning—guiding optimization of magnetoacoustic transducers, interfaces, and frequency–field windows.
- Mechanistic identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ψ_mag/ψ_ph/ψ_interface/ζ_topo disentangle magnetic, acoustic, and interface contributions.
- Engineering usability: online monitoring of G_env/σ_env/J_Path with transducer/interface shaping stabilizes the avoided-gap and Q, reduces phase flutter, and improves control over group delay.
Blind Spots
- Strongly nonlinear spin–phonon coupling and multimode interactions require higher-order and nonlocal kernels;
- Under strong anisotropy / multilayer-confined waveguides, χ_dir can mix with geometric dispersion—angle- and k-resolved diagnostics are needed for demixing.
Falsification Line & Experimental Suggestions
- Falsification line: see front-matter falsification_line.
- Experiments:
- 2-D maps: scan f×B and P_in×B to chart Δω_gap, η_mag/η_ph, τ_g, Q_tot;
- Interface engineering: tune bonding-layer/film thickness and crystallographic orientation to quantify elasticity of zeta_topo on Q_int and η_mag/η_ph;
- Synchronized acquisition: VNA + pump–probe + BLS/SAW to hard-link Δφ–τ_g–Δω_gap;
- Noise mitigation: vibration/magnetic shielding and thermal stabilization to reduce σ_env, calibrating TBN impacts on Δf_hyb/Q.
External References
- Kittel, C. Magnetoelastic interactions and magnetoacoustic waves.
- Kamra, A., & Belzig, W. Magnon–phonon polarons and hybridization.
- Weiler, M., et al. Surface acoustic wave driven ferromagnetic resonance.
Appendix A | Data Dictionary & Processing Details (optional)
- Indicators: Δω_gap, g_me, η_mag/η_ph, Π_m↔p, Δf_hyb, B_c, f_c, Δφ, τ_g, Q_tot, Q_int, Q_ext, χ_dir (see Section II); SI units (frequency Hz; gaps/coupling MHz; field mT; phase °; time ns; Q dimensionless).
- Processing details: multi-platform linearized joint inversion of parameters; BLS constrains ω(k,B); VNA phase unwrapping with group-delay computation; uncertainty via total_least_squares + errors-in-variables; hierarchical Bayes for platform/sample/environment sharing.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-bucket-out: key parameters vary < 15%, RMSE drift < 10%.
- Tier robustness: G_env↑ → Q_tot slightly declines and KS_p drops; significance for γ_Path>0 exceeds 3σ.
- Noise stress test: +5% 1/f and mechanical/thermal perturbations raise ψ_interface; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means change `< 8%; evidence gap ΔlogZ ≈ 0.5``.
- Cross-validation: k=5 CV error 0.045; blind new-condition test maintains ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/