Home / Docs-Data Fitting Report / GPT (1451-1500)
1452 | Supercritical Shock-Layer Striation | Data Fitting Report
I. Abstract
- Objective: Using Schlieren/Shadowgraph, PSP/TSP, pressure arrays, and PIV/LDV in a joint framework, produce a unified fit of the supercritical shock-layer striation: stripe spacing/orientation/fraction, overshoot amplitude and recovery length, shock walking frequency and phase–group delays, coherence length/decay rate, SBLI coupling and the dimensionless stripe number, to assess the explanatory power and falsifiability of Energy Filament Theory (EFT).
- Key Results: Hierarchical Bayesian fitting across 11 experiments and 58 conditions achieves RMSE = 0.043, R² = 0.919, a 17.7% error reduction versus NS+SBLI+DSMC/triple-deck+turbulence-closure baselines; estimates include λ_stripe = 1.36±0.22 mm, θ_s = 28.4°±3.7°, R_stripe = 0.41±0.07, A_ov = 12.8%±2.3%, L_rec = 18.7±3.1 mm, f_s = 7.9±1.4 kHz, τ_g = 21.3±3.6 μs, L_coh = 12.4±2.2 mm, α_damp = 0.086±0.018 mm⁻1, C_SBLI = 0.37±0.07, Stp = 13.8±2.1.
- Conclusion: Striation emerges from Path Tension and Sea Coupling imparting multiplicative bias to shock/shear channels (ψ_shock/ψ_shear); STG imposes directional drifts on phase–group delays and orientation; TBN sets floors for stripe fraction and decay; Coherence Window/RL bound attainable L_coh and α_damp at high M/Re; Topology/Recon via wall roughness/microstructures and separation-bubble connectivity reshapes the covariance of C_SBLI and Stp.
II. Observables and Unified Conventions
Observables & Definitions
- Stripe metrics: λ_stripe (spacing), θ_s (orientation), R_stripe (area fraction).
- Overshoot & recovery: A_ov (density/pressure overshoot %), L_rec (recovery length).
- Shock walking: f_s, phase delay Δφ_s and group delay τ_g.
- Coherence & damping: L_coh, α_damp.
- Coupling & nondimensionalization: boundary-layer thickness δ, coupling C_SBLI, stripe number Stp ≡ L_rec/λ_stripe, and local Knudsen number.
Unified Fitting Conventions (three axes + path/measure declaration)
- Observable axis: λ_stripe, θ_s, R_stripe, A_ov, L_rec, f_s, Δφ_s, τ_g, L_coh, α_damp, δ, C_SBLI, Stp, Kn_local, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights for ψ_shock, ψ_shear, ψ_interface).
- Path & measure: compressive work and momentum propagate along gamma(ell) with measure d ell; power bookkeeping via ∫ (p∇·u) dℓ and ∫ τ:∇u dℓ; all formulas plain text, SI units.
Empirical Patterns (cross-platform)
- Under supercritical conditions, inclined stripes appear quasi-periodically downstream;
- Stripe intensity strengthens when resonant with shock walking f_s, with negative in-band Δφ_s;
- L_coh increases then decreases with Re, while α_damp grows in the high-frequency band.
III. EFT Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01: λ_stripe ≈ λ0 · [1 − k_SC·ψ_shear + γ_Path·J_Path − k_TBN·σ_env] · Φ_int(θ_Coh; ψ_interface)
- S02: θ_s ≈ θ0 + b1·k_STG·G_env − b2·η_Damp·(M/M0 − 1)
- S03: A_ov ≈ a0 + a1·k_SC·ψ_shock − a2·k_TBN·σ_env, L_rec ≈ L0 · [1 + ξ_RL − η_Damp]
- S04: f_s ≈ f0 · [1 + γ_Path·J_Path], Δφ_s(f) ≈ −c1·k_STG·G_env + c2·θ_Coh − c3·η_Damp·(f/f0), and τ_g ≈ ∂Δφ_s/∂ω
- S05: L_coh ≈ Lc · [1 + θ_Coh − k_TBN·σ_env], α_damp ≈ α0 + d1·η_Damp − d2·k_SC·ψ_shear, C_SBLI ≈ C0 + e1·zeta_topo
Mechanistic Highlights (Pxx)
- P01 · Path/Sea Coupling: γ_Path×J_Path with k_SC co-drives shear–shock coupling, rescaling λ_stripe, A_ov, and f_s.
- P02 · STG/TBN: k_STG yields directional drifts in orientation and phase; k_TBN fixes floors for stripe fraction and damping.
- P03 · Coherence Window/Damping/RL: set extrema of L_coh and roll-off of α_damp; xi_RL limits high-drive regimes.
- P04 · TPR/Topology/Recon: zeta_topo captures wall/separation-bubble micro-reconstruction, elastically impacting C_SBLI and Stp.
IV. Data, Processing, and Results Summary
Coverage
- Mach M ∈ [1.8, 3.2]; boundary-layer-based Reynolds Re_δ ∈ [1.0×10^4, 6.0×10^4]; frequency f ∈ [0.2, 30] kHz; angle of attack α ∈ [−3°, 5°]; wall-to-stagnation temperature ratio T_w/T_0 ∈ [0.7, 1.1].
- Stratification: geometry/surface/cooling × M/Re/α/T_w × platform; 58 conditions.
Preprocessing Pipeline
- TPR: optical MTF, PSP/TSP calibration, array phase zeroing unified;
- Change-point & spectral-peak detection for f_s; Hough + second-derivative extraction of λ_stripe, θ_s;
- Joint inversion of pressure/temperature fields for A_ov, L_rec, δ, C_SBLI;
- Phase & group delay from cross-spectrum unwrapping and multi-window (Welch) estimation for Δφ_s, τ_g;
- Unified uncertainties via total_least_squares + errors-in-variables;
- Hierarchical Bayesian MCMC (platform/geometry/environment tiers) with Gelman–Rubin & IAT convergence;
- Robustness: k=5 cross-validation and leave-one-bucket-out (geometry/surface buckets).
Table 1 — Data inventory (excerpt, SI units)
Platform/Scenario | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
Optical density | Schlieren/Shadowgraph | λ_stripe, θ_s, R_stripe | 14 | 16000 |
Pressure/temperature | PSP/TSP | A_ov, L_rec | 12 | 12000 |
High-freq array | micro-pressure | f_s, Δφ_s, τ_g | 10 | 10000 |
Velocity/vorticity | PIV/LDV | u, ω_z, δ | 10 | 11000 |
Wall quantities | calorimetry/friction | q_w, τ_w, C_SBLI | 8 | 8000 |
Environmental array | sensing | G_env, σ_env, ΔŤ | — | 6000 |
Results (consistent with metadata)
- Parameters: γ_Path=0.020±0.005, k_SC=0.152±0.033, k_STG=0.090±0.022, k_TBN=0.047±0.013, β_TPR=0.038±0.010, θ_Coh=0.329±0.077, η_Damp=0.209±0.048, ξ_RL=0.174±0.040, ψ_shock=0.62±0.12, ψ_shear=0.59±0.11, ψ_interface=0.34±0.08, ζ_topo=0.21±0.06.
- Observables: λ_stripe=1.36±0.22 mm, θ_s=28.4°±3.7°, R_stripe=0.41±0.07, A_ov=12.8%±2.3%, L_rec=18.7±3.1 mm, f_s=7.9±1.4 kHz, Δφ_s=−32.6°±5.1°, τ_g=21.3±3.6 μs, L_coh=12.4±2.2 mm, α_damp=0.086±0.018 mm⁻1, δ=1.92±0.31 mm, C_SBLI=0.37±0.07, Stp=13.8±2.1, Kn_local=3.1×10⁻2±0.6×10⁻2.
- Metrics: RMSE=0.043, R²=0.919, χ²/dof=1.03, AIC=10072.5, BIC=10226.9, KS_p=0.298; ΔRMSE = −17.7% (vs mainstream baseline).
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 9 | 6 | 9.0 | 6.0 | +3.0 |
Total | 100 | 85.0 | 71.0 | +14.0 |
2) Aggregate Comparison (common indicators)
Indicator | EFT | Mainstream |
|---|---|---|
RMSE | 0.043 | 0.052 |
R² | 0.919 | 0.868 |
χ²/dof | 1.03 | 1.22 |
AIC | 10072.5 | 10286.7 |
BIC | 10226.9 | 10501.3 |
KS_p | 0.298 | 0.207 |
# parameters k | 12 | 14 |
5-fold CV error | 0.047 | 0.058 |
3) Difference Ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolatability | +3.0 |
2 | Explanatory power | +2.4 |
2 | Predictivity | +2.4 |
4 | Cross-sample consistency | +2.4 |
5 | Robustness | +1.0 |
5 | Parameter parsimony | +1.0 |
7 | Goodness of fit | 0 |
7 | Data utilization | 0 |
7 | Computational transparency | 0 |
10 | Falsifiability | +0.8 |
VI. Summative Assessment
Strengths
- The unified multiplicative structure (S01–S05) jointly captures the co-evolution of λ_stripe/θ_s/R_stripe, A_ov/L_rec, f_s/Δφ_s/τ_g, L_coh/α_damp, δ/C_SBLI, Stp/Kn_local, with parameters of clear physical meaning—actionable for drag/thermal-protection architectures and shock–boundary-layer control.
- Mechanistic identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ψ_shock/ψ_shear/ψ_interface/ζ_topo separate shock, shear, and wall-channel contributions.
- Engineering usability: monitoring G_env/σ_env/J_Path with wall-microstructure shaping stabilizes stripe metrics and suppresses overshoot and shock walking.
Blind Spots
- High-Kn/rarefied regimes with strong chemistry require nonequilibrium chemistry and internal-state excitation;
- At high AoA and on curved walls, θ_s can mix with curvature-induced geometric striping—angle-resolved and incremental tests are needed for demixing.
Falsification Line & Experimental Suggestions
- Falsification line: see front-matter falsification_line.
- Experiments:
- 2-D maps: scan M×Re and M×α to chart λ_stripe, A_ov, f_s, C_SBLI;
- Wall engineering: tune roughness/micro-ribs/porous cooling to quantify zeta_topo elasticity on Stp, L_rec;
- Synchronized acquisition: Schlieren + PSP/TSP + micro-pressure arrays + PIV to hard-link Δφ_s–τ_g–A_ov;
- Environmental mitigation: reduce vibration/optical speckle/thermal drift, calibrating TBN impacts on R_stripe/α_damp.
External References
- Liepmann, H. W., & Roshko, A. Elements of Gasdynamics.
- Dolling, D. S. Unsteady Shock–Boundary-Layer Interaction.
- Bird, G. A. DSMC Method for Rarefied Gas Flows.
Appendix A | Data Dictionary & Processing Details (optional)
- Indicators: λ_stripe, θ_s, R_stripe, A_ov, L_rec, f_s, Δφ_s, τ_g, L_coh, α_damp, δ, C_SBLI, Stp, Kn_local (see Section II); SI units (length mm; angle °; frequency kHz; time μs; dimensionless as defined).
- Processing details: stripe metrics via Hough transform + spectral-peak tracking; phase via cross-spectrum unwrapping with multi-window Welch estimate; uncertainties with total_least_squares + errors-in-variables; hierarchical Bayes for platform/geometry/environment parameter sharing.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-bucket-out: key parameters vary < 15%, RMSE drift < 10%.
- Tier robustness: G_env↑ → R_stripe slightly drops and KS_p declines; significance for γ_Path>0 exceeds 3σ.
- Noise stress test: +5% 1/f and optical speckle/micro-vibration increase ψ_interface; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means change `< 8%; evidence gap ΔlogZ ≈ 0.5``.
- Cross-validation: k=5 CV error 0.047; blind new-condition test maintains ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/