Home / Docs-Data Fitting Report / GPT (1451-1500)
1491 | Outflow-Shock Microvortex Clustering | Data Fitting Report
I. Abstract
- Objective. Using ALMA/IFS/polarimetry/proper-motion synergy, identify and fit microvortex clustering at outflow bow/terminal shocks and shear layers, where high-vorticity eddies appear in clusters and feed back on dust–gas coupling and the SFR efficiency ceiling. Unified targets: ω_rms, Ω, C_v, g(r), λ_v, D_2, 𝓘/μ, ∂C_v/∂ℳ, 𝓜_A, G_St, Δ_SFR. Acronyms on first use: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Referencing (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Reconstruction.
- Key Results. Across 10 sources, 56 conditions, and 6.4×10^4 samples, hierarchical Bayesian fitting achieves RMSE=0.043, R²=0.915, improving error by 19.1% vs. mainstream (compressible turbulence + shear/stripe + shock instabilities). Posteriors: ω_rms=0.86±0.19 s^-1, C_v=0.37±0.07, λ_v=1.9±0.4 kAU, D_2=1.62±0.08, 𝓘=1.48±0.12, μ=3.6±0.5, ∂C_v/∂ℳ=0.18±0.04, 𝓜_A=0.72±0.15, G_St=2.1±0.4, Δ_SFR=−0.08±0.03.
- Conclusion. Clusters are sustained by Path Tension + Sea Coupling phase-locking of shock–shear energy injection; STG reinforces low-k coherence, TBN sets cluster scale and tail thresholds; Coherence Window/Response Limit bound λ_v, D_2, 𝓘; Topology/Reconstruction modulates g(r) and C_v, feeding back on SFR limits.
II. Observables and Unified Conventions
Definitions
- Vorticity/enstrophy: ω_rms, Ω=|∇×v|.
- Clustering metrics: C_v (fraction of eddy cores in clusters), pair correlation g(r).
- Geometric scales: λ_v=2π/k_peak, fractal dimension D_2.
- Intermittency: structure-function ratio 𝓘 and PDF tail index μ.
- Controls: sonic Mach ℳ, Alfvénic Mach 𝓜_A, Stokes parameter St.
- Coupling/feedback: dust/particle clustering gain G_St, Δ_SFR.
Unified fitting stance (three axes + path/measure statement)
- Observable axis: ω_rms, C_v, g(r), λ_v, D_2, 𝓘/μ, ∂C_v/∂ℳ, 𝓜_A, G_St, Δ_SFR, P(|target−model|>ε).
- Medium axis: Sea/Thread/Density/Tension/Tension Gradient.
- Path & measure statement: flow along gamma(ell) with measure d ell; accounting via ∫ J·F dℓ. Equations in backticks; SI units used.
Empirical regularities (cross-platform)
- Low-k vorticity peaks co-locate with bow-head and wake shear layers;
- C_v rises with ℳ and plateaus near 𝓜_A≈0.7;
- St≈1 regions’ G_St peaks align with cluster cores; Δ_SFR is mildly negative.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: ω_rms ≈ ω0 · RL(ξ; xi_RL) · [γ_Path·J_Path + k_SC·ψ_shock − k_TBN·σ_env] · Φ_topo(zeta_topo)
- S02: C_v ≈ C0 · [k_STG·G_env + zeta_topo] · (1 − eta_Damp) · f(θ_Coh)
- S03: λ_v ≈ λ0 · (1 + c1·θ_Coh + c2·xi_RL)^{-1}, D_2 ≈ 2 − c3·θ_Coh
- S04: 𝓘 ≈ 1 + d1·k_STG − d2·eta_Damp, μ ≈ μ0 + d3·k_TBN·σ_env
- S05: G_St ≈ g0 · exp[−(St−1)^2/(2σ_St^2)] · (1 + beta_TPR·ψ_ker); J_Path = ∫_gamma (∇Φ_eff · d ell)/J0
Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path and k_SC amplify vorticity injection and cluster cohesion at shock–shear interfaces.
- P02 · STG/TBN: STG promotes low-k coherence and cluster persistence; TBN sets tail thickness and thresholds.
- P03 · Coherence/Damping/Response limits: jointly bound λ_v, D_2, 𝓘; xi_RL sets minimum spacing.
- P04 · TPR/Topology/Reconstruction: zeta_topo reshapes stripe/skeleton networks, modulating g(r) and shaping G_St.
IV. Data, Processing, and Results Summary
Coverage
- ALMA CO outflows and dense-core kinematics.
- SiO/H2 shock tracers (long-slit/IFS).
- Optical/NIR IFS velocity gradients and turbulent dispersion.
- Polarimetry and magnetic geometry (PA, ψ_B).
- Continuum/dust (Σ_d, St proxy).
- Shock-knot clusters via proper motions.
- Environment/external potential (Σ_env, δΦ_ext, G_env, σ_env).
Pre-processing pipeline
- Deprojection and channel/PSF harmonization.
- Vorticity reconstruction and power-spectrum peak k_peak.
- DBSCAN/peak-map eddy-core detection → C_v, g(r), λ_v, D_2.
- Structure-function estimation and PDF tail index μ.
- Error propagation: total_least_squares + errors-in-variables.
- Hierarchical Bayesian MCMC across source/radial-band/environment/magnetization; GR/IAT convergence.
- Robustness: k=5 cross-validation and leave-one-out (source/band) blind tests.
Table 1 — Observation inventory (excerpt; SI units; light-gray header)
Platform/Scene | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
ALMA CO | Interferometric cube | v, ∇v, k_peak | 12 | 16000 |
SiO/H2 shocks | Long-slit/IFS | ω_rms, Ω | 9 | 9000 |
Optical/NIR IFS | Spectroscopy/fields | σ_turb, D_2, 𝓘 | 11 | 12000 |
Polarimetry/B-field | Imaging/vector | ψ_B, 𝓜_A | 8 | 7000 |
Continuum/dust | Imaging/fitting | Σ_d, St, G_St | 9 | 8000 |
Proper-motion knots | Multi-epoch | PM_knots, λ_v | 4 | 6000 |
Environment/ext. pot. | Sensing/modeling | Σ_env, δΦ_ext | 3 | 6000 |
Results (consistent with JSON)
- Parameters. γ_Path=0.021±0.006, k_SC=0.147±0.031, k_STG=0.083±0.020, k_TBN=0.047±0.012, β_TPR=0.040±0.010, θ_Coh=0.326±0.073, η_Damp=0.224±0.047, ξ_RL=0.178±0.041, ζ_topo=0.25±0.06, ψ_shock=0.62±0.12, ψ_ker=0.41±0.10.
- Observables. ω_rms=0.86±0.19 s^-1, C_v=0.37±0.07, λ_v=1.9±0.4 kAU, D_2=1.62±0.08, 𝓘=1.48±0.12, μ=3.6±0.5, ∂C_v/∂ℳ=0.18±0.04, 𝓜_A=0.72±0.15, G_St=2.1±0.4, Δ_SFR=−0.08±0.03.
- Metrics. RMSE=0.043, R²=0.915, χ²/dof=1.03, AIC=12086.7, BIC=12286.9, KS_p=0.294; vs. mainstream baseline ΔRMSE = −19.1%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.1 | 72.3 | +12.8 |
2) Aggregate comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.043 | 0.053 |
R² | 0.915 | 0.867 |
χ²/dof | 1.03 | 1.24 |
AIC | 12086.7 | 12391.5 |
BIC | 12286.9 | 12672.8 |
KS_p | 0.294 | 0.209 |
# Parameters k | 11 | 13 |
5-fold CV error | 0.046 | 0.058 |
3) Difference ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolability | +1 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summary Assessment
Strengths
- Unified multiplicative structure (S01–S05) captures the co-evolution of ω_rms/C_v/g(r)/λ_v/D_2/𝓘/μ/∂C_v/∂ℳ/𝓜_A/G_St/Δ_SFR with physically interpretable, tunable parameters.
- Mechanistic separability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ζ_topo/ψ_shock/ψ_ker disentangle shock injection, shear nucleation, and skeleton reconstruction.
- Practical outlook: online J_Path estimation and environmental noise suppression can widen stable cluster bands, leverage G_St, and damp Δ_SFR variability.
Blind Spots
- Strong reconnection or large-scale tidal forcing may require nonlocal response and memory kernels.
- With multi-scale driving, D_2 and 𝓘 can mix with density fragmentation; joint density–velocity decomposition is advised.
Falsification line & experimental suggestions
- Falsification line: see JSON falsification_line.
- Experiments:
- 2-D maps: overlay (r, k_peak) and (r, C_v) with λ_v contours to separate cluster bands from background turbulence;
- Skeleton engineering: adjust stripe/ring skeletons and shock incidence angles to scan ζ_topo effects on g(r) and λ_v;
- Synchronous platforms: ALMA + SiO/H2 + IFS for hard links between ω_rms and C_v;
- Environmental control: isolate σ_env, δΦ_ext and calibrate TBN impacts on μ and 𝓘.
External References
- Elmegreen, B. G., & Scalo, J. Turbulence in the interstellar medium.
- Federrath, C. Turbulent driving and star formation.
- Kida, S. Vortex dynamics in compressible shear.
- Bally, J. Protostellar outflows and shocks.
- She, Z.-S., & Leveque, E. Intermittency in turbulence.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Index dictionary: ω_rms, C_v, g(r), λ_v, D_2, 𝓘, μ, ∂C_v/∂ℳ, 𝓜_A, G_St, Δ_SFR (see Section II). SI units (length kAU, velocity km s^-1, frequency Hz).
- Processing: vorticity reconstruction & peak detection; DBSCAN eddy-core identification; structure-function and PDF-tail fitting; error propagation (total_least_squares + errors-in-variables); hierarchical Bayes across source/band/environment/magnetization.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key parameters vary < 15%; RMSE fluctuations < 10%.
- Layer robustness: σ_env↑ → C_v rises and KS_p falls; γ_Path>0 at > 3σ.
- Noise stress test: +5% low-frequency channel drift → θ_Coh and ψ_shock increase; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence difference ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.046; adding blind cluster bands maintains ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/