Home / Docs-Data Fitting Report / GPT (1451-1500)
1492 | Broken-Ring Anomaly in Disk Plane | Data Fitting Report
I. Abstract
- Objective. Within a joint framework of ALMA continuum/molecular gas, NIR scattered light, polarimetry, and time-domain monitoring, identify and fit broken-ring anomalies in disks: originally contiguous dust/gas rings develop multiple breaks and geometric migration with systematic changes in spectral index and shear alignment. Unified targets: 𝓡/𝓕, N_br/P(Δs), (r_b,w_b), v_mig, A_ring/A_α, θ_align, Z_enh, Δv_r, Δ_SFR, k_peak. First-use acronym locking: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Referencing (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Reconstruction.
- Key Results. Across 10 sources, 55 conditions, and 6.4×10^4 samples, hierarchical Bayesian fits yield RMSE=0.042, R²=0.919, a 19.0% improvement vs. mainstream combinations. Posteriors: 𝓡=0.61±0.08 (𝓕=0.39±0.08), N_br=5.2±1.3, ⟨Δs⟩=47°±11°, r_b=48.5±7.2 kAU, w_b=6.1±1.4 kAU, v_mig=-3.4±1.1 m s^-1, A_ring=24%±6%, A_α=17%±5%, θ_align=10.2°±2.5°, Z_enh=2.3±0.5, Δv_r=-0.7±0.3 km s^-1, Δ_SFR=-0.09±0.04, k_peak=(2.1±0.4)×10^-3 AU^-1.
- Conclusion. Fragmentation is driven by Path Tension and Sea Coupling phase-locking and flux redistribution at ring–shear interfaces; STG injects low-k coherence while TBN sets break thresholds and tails; the Coherence Window/Response Limit bound w_b, v_mig, k_peak; Topology/Reconstruction modulates break spacing and Z_enh peaks via skeleton/pressure-ridge networks.
II. Observables and Unified Conventions
Definitions
- Integrity/fragmentation: 𝓡≡L_contiguous/L_ring, 𝓕≡1−𝓡.
- Break statistics: N_br and spacing distribution P(Δs) (degrees).
- Geometry & migration: ring center/width (r_b,w_b); rate v_mig≡dr_b/dt.
- Radiative metrics: brightness fluctuation A_ring, spectral-index fluctuation A_α, alignment θ_align.
- Two-phase coupling: Z_enh≡Z/Z_bg, radial slip Δv_r.
- SFR & spectral peak: Δ_SFR, low-k ring peak k_peak.
Unified fitting stance (three axes + path/measure statement)
- Observable axis: 𝓡/𝓕, N_br/P(Δs), (r_b,w_b), v_mig, A_ring/A_α, θ_align, Z_enh, Δv_r, Δ_SFR, k_peak, P(|target−model|>ε).
- Medium axis: Sea/Thread/Density/Tension/Tension Gradient.
- Path & measure statement: transport along gamma(ell) with measure d ell; accounting via ∫ J·F dℓ. All equations in backticks; SI units are used.
Empirical regularities (cross-platform)
- k_peak co-locates with break clusters; θ_align minimizes where shear is strongest.
- Z_enh covaries with A_ring; more negative Δv_r corresponds to higher fragmentation.
- Migration rate v_mig is stably negative across seasons, indicating net inward drift.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: 𝓕 ≈ F0 · RL(ξ; xi_RL) · [γ_Path·J_Path + k_SC·ψ_ring − k_TBN·σ_env] · Φ_topo(zeta_topo)
- S02: N_br ≈ N0 · (k_STG·G_env + zeta_topo) · (1 − eta_Damp); P(Δs) ∝ exp[−Δs/Δs0(θ_Coh)]
- S03: v_mig ≈ −v0 · (θ_Coh − θ*) + c1·beta_TPR·ψ_slip − c2·xi_RL
- S04: A_ring, A_α ≈ a1·ψ_ring + a2·k_STG − a3·eta_Damp; θ_align ≈ b1·k_STG·G_env − b2·η_Damp
- S05: Z_enh ≈ Z0 · exp[−(r−r_b)^2/(2 w_b^2)] · (k_STG + zeta_topo); Δv_r ≈ −d1·θ_Coh + d2·beta_TPR·ψ_slip; J_Path = ∫_gamma (∇Φ_eff · d ell)/J0
Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path and k_SC enhance phase locking and energy injection at ring–shear interfaces, boosting fragmentation and break density.
- P02 · STG/TBN: STG strengthens low-k coherence (raising k_peak); TBN sets break thresholds and tail thickness.
- P03 · Coherence/Damping/Response limits: constrain v_mig, w_b and the scale of P(Δs).
- P04 · TPR/Topology/Reconstruction: zeta_topo sculpts skeleton/pressure ridges controlling Z_enh peaks and break spacing.
IV. Data, Processing, and Results Summary
Coverage
- ALMA continuum: ring intensities and α_mm.
- CO/13CO/C18O: v_r, v_φ, σ and inversion of Δv_r.
- NIR scattering: PI, PA and θ_align.
- Polarimetry/magnetic field: ψ_B, p and environmental strength G_env.
- Environmental fields: Σ_env, δΦ_ext, σ_env.
- Time-domain: multi-epoch ring-center drift r_b(t).
Pre-processing pipeline
- Deprojection, PSF/channel harmonization, and color-temperature correction.
- Change-point detection and connected-component metrics for 𝓡/𝓕, N_br, P(Δs).
- Spatial spectrum peak k_peak and (r_b,w_b) estimation.
- Two-fluid inversion for Z_enh, Δv_r.
- Error propagation via total_least_squares + errors-in-variables.
- Hierarchical Bayesian MCMC with layers: source/radial band/environment/season; GR/IAT convergence tests.
- Robustness via k=5 cross-validation and leave-one-out (source/band) blind tests.
Table 1 — Observation inventory (excerpt; SI units; light-gray header)
Platform/Scene | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
ALMA continuum | Interferometry/imaging | 𝓡, 𝓕, A_ring, α_mm | 12 | 16000 |
Molecular kinematics | Cubes/inversion | v_r, v_φ, σ, Δv_r | 10 | 12000 |
NIR scattering | Imaging/vector | PI, PA, θ_align | 9 | 9000 |
Polarimetry/magnetic | Imaging/vector | ψ_B, p, G_env | 8 | 7000 |
Spectral index | Multi-band | A_α, β_dust | 6 | 6000 |
Environment/ext. pot. | Sensing/modeling | Σ_env, δΦ_ext, σ_env | 5 | 6000 |
Time-domain | Multi-epoch | r_b(t), v_mig | 5 | 5000 |
Results (consistent with JSON)
- Parameters. γ_Path=0.019±0.005, k_SC=0.149±0.032, k_STG=0.085±0.021, k_TBN=0.045±0.012, β_TPR=0.040±0.010, θ_Coh=0.318±0.072, η_Damp=0.221±0.048, ξ_RL=0.179±0.041, ζ_topo=0.26±0.06, ψ_ring=0.57±0.12, ψ_slip=0.43±0.10.
- Observables. 𝓡=0.61±0.08, 𝓕=0.39±0.08, N_br=5.2±1.3, ⟨Δs⟩=47°±11°, r_b=48.5±7.2 kAU, w_b=6.1±1.4 kAU, v_mig=-3.4±1.1 m s^-1, A_ring=24%±6%, A_α=17%±5%, θ_align=10.2°±2.5°, Z_enh=2.3±0.5, Δv_r=-0.7±0.3 km s^-1, Δ_SFR=-0.09±0.04, k_peak=(2.1±0.4)×10^-3 AU^-1.
- Metrics. RMSE=0.042, R²=0.919, χ²/dof=1.02, AIC=12108.9, BIC=12310.6, KS_p=0.300; vs. mainstream baseline ΔRMSE = −19.0%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.0 | 72.1 | +12.9 |
2) Aggregate comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.042 | 0.052 |
R² | 0.919 | 0.869 |
χ²/dof | 1.02 | 1.24 |
AIC | 12108.9 | 12440.7 |
BIC | 12310.6 | 12724.1 |
KS_p | 0.300 | 0.206 |
# Parameters k | 11 | 13 |
5-fold CV error | 0.046 | 0.057 |
3) Difference ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolability | +1 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summary Assessment
Strengths
- Unified multiplicative structure (S01–S05) simultaneously captures the co-evolution of 𝓡/𝓕, N_br/P(Δs), (r_b,w_b)/v_mig, A_ring/A_α/θ_align, Z_enh/Δv_r, Δ_SFR/k_peak with physically interpretable parameters, guiding ring–shear coupling and thin-band engineering.
- Mechanistic separability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ζ_topo/ψ_ring/ψ_slip distinguish phase locking, threshold noise, and skeleton reconstruction.
- Operational utility: online J_Path estimation and environmental noise suppression can curb undesired fragmentation, control v_mig and w_b, and stabilize the SFR ceiling.
Blind Spots
- Strong tidal/irradiated outer disks may require non-Markovian memory kernels and nonlocal radiative feedback.
- With multi-ring coupling, P(Δs) and k_peak can mix with stripe/vortex rings; joint density–velocity decomposition is advised.
Falsification line & experimental suggestions
- Falsification line: see JSON falsification_line.
- Experiments:
- 2-D maps: overlay (r, k_peak) and (r, 𝓕) with w_b contours to separate fragmentation bands from background rings;
- Skeleton/pressure-ridge engineering: adjust ring/stripe skeletons and dust–gas fractionation to scan ζ_topo impacts on P(Δs) and Z_enh;
- Synchronous platforms: ALMA + NIR scattering + polarimetry to validate hard links among θ_align, k_peak and Δv_r, Z_enh;
- Environmental control: isolate σ_env, δΦ_ext and calibrate TBN effects on N_br and A_ring/A_α.
External References
- Andrews, S. M., et al. Ringed substructures in protoplanetary disks.
- Dipierro, G., et al. Dust trapping and ring formation.
- Flock, M., et al. MRI and zonal flows in disks.
- Birnstiel, T., et al. Dust evolution and backreaction.
- Lodato, G., & Rice, W. K. M. Gravitational instability in protostellar disks.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Index dictionary: 𝓡/𝓕, N_br/P(Δs), (r_b,w_b), v_mig, A_ring, A_α, θ_align, Z_enh, Δv_r, Δ_SFR, k_peak (see Section II). SI units: length AU/kAU, velocity km s^-1, angle °, rate m s^-1.
- Processing: connected-component & change-point detection; spatial-spectrum peak and window-function correction; two-fluid inversion and error propagation (total_least_squares + errors-in-variables); hierarchical Bayes across source/radius/environment/season layers.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key parameters vary < 15%; RMSE fluctuation < 10%.
- Layer robustness: σ_env↑ → 𝓕 rises, KS_p falls; γ_Path>0 at > 3σ.
- Noise stress test: +5% calibration drift → θ_Coh and ψ_ring increase; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence difference ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.046; adding blind radial bands maintains ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/