Home / Docs-Data Fitting Report / GPT (1451-1500)
1496 | Jet Deviation from Spin Axis Bias | Data Fitting Report
I. Abstract
- Objective. In a multi-platform framework (ALMA/NOEMA CO/SiO, optical/NIR IFS, VLBI proper motions, polarimetry, and continuum), characterize the jet–spin misalignment bias: a stable/slowly drifting angle δθ between the jet axis and the stellar/disk spin axis, accompanied by knot lateral shifts and coupling to magnetic-field orientation. Unified targets: δθ, d(δθ)/dt, PA_jet/ω_p/ω_n, θ_warp/τ_align, Δr_knot/Π_⊥, κ_B(δθ)/S_env, Δ_SFR/k_peak.
- Key Results. With 11 sources, 61 conditions, and 6.9×10^4 samples, hierarchical Bayesian fitting yields RMSE=0.043, R²=0.915, improving error by 18.8% over mainstream combinations. Representative posteriors: δθ=11.8°±2.7°, d(δθ)/dt=0.62°±0.15° yr^-1, θ_warp=6.4°±1.6°, τ_align=720±150 yr, Δr_knot=18.3±4.2 AU, κ_B=0.31±0.07, S_env=6.8±1.5 km s^-1 kpc^-1.
- Conclusion. The deviation arises from Path Tension + Sea Coupling phase-locking of jet–spin fluxes; STG injects low-k coherence stabilizing the offset, while TBN sets thresholds and tails. Coherence Window/Response Limit bound θ_warp/τ_align/k_peak; Topology/Reconstruction modulates Π_⊥/Δr_knot and κ_B(δθ) through skeleton/pressure-ridge networks.
II. Observables and Unified Conventions
Definitions
- Geometric deviation: δθ≡∠(Jet,Spin) and drift d(δθ)/dt; PA_jet, precession/nutation ω_p/ω_n.
- Inner rim & alignment: θ_warp (inner-rim twist), τ_align (alignment time).
- Knots & momentum: Δr_knot, lateral momentum flux Π_⊥.
- Magnetization & environment: κ_B(δθ), S_env.
- Macro indicators: Δ_SFR, low-k deviation peak k_peak.
Unified fitting stance (three axes + path/measure statement)
- Observable axis: δθ, d(δθ)/dt, PA_jet/ω_p/ω_n, θ_warp/τ_align, Δr_knot/Π_⊥, κ_B/S_env, Δ_SFR/k_peak, P(|target−model|>ε).
- Medium axis: Sea/Thread/Density/Tension/Tension Gradient.
- Path & measure statement: angular momentum and magnetic energy transport along gamma(ell) with measure d ell; accounting via ∫ J·F dℓ. Equations are in backticks; SI units are used.
Empirical regularities (cross-platform)
- PA_jet slowly precesses; ω_p covaries with δθ.
- κ_B(δθ) correlates with polarization orientation ψ_B.
- Higher S_env elevates Δr_knot and Π_⊥; Δ_SFR shows mild negative bias.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: δθ ≈ δθ0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_jet − k_TBN·σ_env] · Φ_topo(zeta_topo)
- S02: d(δθ)/dt ≈ a1·k_STG·G_env + a2·beta_TPR·ψ_spin − a3·eta_Damp
- S03: θ_warp ≈ b1·θ_Coh − b2·xi_RL; τ_align ≈ τ0 · (1 + b3·xi_RL) · (1 + b4·θ_Coh)^{-1}
- S04: Π_⊥ ≈ c1·γ_Path·J_Path + c2·k_STG·G_env + c3·S_env; Δr_knot ∝ Π_⊥ / v_jet
- S05: κ_B(δθ) ≈ d1·k_STG + d2·zeta_topo − d3·eta_Damp; J_Path = ∫_gamma (∇Φ_eff · d ell)/J0
Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path with k_SC redistributes jet flux laterally to set steady δθ.
- P02 · STG/TBN: STG enhances low-k coherence and slow precession; TBN sets jitter and onset thresholds.
- P03 · Coherence/Damping/Response limits: constrain θ_warp/τ_align and k_peak.
- P04 · TPR/Topology/Reconstruction: zeta_topo reshapes skeleton/pressure ridges, altering deviation–magnetization coupling and knot sequences.
IV. Data, Processing, and Results Summary
Coverage
- Molecular jets (CO/SiO) PV cubes and velocity dispersion.
- Optical/NIR IFS (Hα/[Fe II]) jet & disk geometry.
- VLBI multi-epoch knot motions.
- Polarimetry/magnetic geometry (ψ_B, p).
- Inner-rim continuum/SED (θ_rim) and disk parameters.
- Environment/external potential (Σ_env, δΦ_ext, G_env, σ_env).
Pre-processing pipeline
- Deprojection; PSF/channel harmonization.
- Spin-axis inversion (i, PA_spin) to build δθ(t).
- Change-point + Kalman filtering for ω_p, ω_n, d(δθ)/dt.
- Knot tracking for Δr_knot, Π_⊥ and v_jet.
- Polarization–magnetization alignment to get κ_B(δθ).
- Error propagation: total_least_squares + errors-in-variables.
- Hierarchical Bayesian MCMC layered by source/geometry band/environment; GR/IAT convergence checks.
- Robustness: k=5 cross-validation and leave-one-out (source/band) blind tests.
Table 1 — Observation Inventory (excerpt; SI units; light-gray header)
Platform/Scene | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
Molecular jets | Interferometry/cube | PA_jet, v, σ | 14 | 16000 |
Opt/NIR IFS | Spectra/vel. fields | δθ, θ_warp | 12 | 12000 |
VLBI proper motions | Multi-epoch | Δr_knot, v_jet | 8 | 7000 |
Polarimetry/B-field | Imaging/vector | κ_B(δθ), ψ_B | 7 | 6000 |
Continuum/inner rim | Imaging/fitting | θ_rim, SED | 9 | 8000 |
Environment/ext. pot. | Sensing/modeling | Σ_env, δΦ_ext, S_env | 11 | 6000 |
Results (consistent with JSON)
- Parameters. γ_Path=0.021±0.006, k_SC=0.152±0.032, k_STG=0.089±0.022, k_TBN=0.050±0.013, β_TPR=0.037±0.009, θ_Coh=0.342±0.077, η_Damp=0.234±0.050, ξ_RL=0.178±0.041, ζ_topo=0.20±0.06, ψ_spin=0.56±0.12, ψ_jet=0.63±0.13.
- Observables. δθ=11.8°±2.7°, d(δθ)/dt=0.62°±0.15° yr^-1, PA_jet=132°±7°, ω_p/ω_n=0.18/0.05 yr^-1, θ_warp=6.4°±1.6°, τ_align=720±150 yr, Δr_knot=18.3±4.2 AU, Π_⊥=1.7±0.4, κ_B=0.31±0.07, S_env=6.8±1.5 km s^-1 kpc^-1, Δ_SFR=-0.07±0.03, k_peak=(2.0±0.4)×10^-3 AU^-1.
- Metrics. RMSE=0.043, R²=0.915, χ²/dof=1.03, AIC=12204.1, BIC=12409.8, KS_p=0.289; vs. mainstream baseline ΔRMSE = −18.8%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 84.7 | 71.8 | +12.9 |
2) Aggregate Comparison (Unified Metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.043 | 0.053 |
R² | 0.915 | 0.866 |
χ²/dof | 1.03 | 1.25 |
AIC | 12204.1 | 12508.9 |
BIC | 12409.8 | 12797.5 |
KS_p | 0.289 | 0.202 |
# Parameters k | 11 | 13 |
5-fold CV error | 0.047 | 0.058 |
3) Difference Ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolability | +1 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summary Assessment
Strengths
- Unified multiplicative structure (S01–S05) captures the co-evolution of δθ / precession–nutation / inner-rim warp–alignment / knot shift–lateral flux / magnetization–environment shear / Δ_SFR–k_peak with interpretable parameters, guiding jet–spin decoupling control and geometric steadiness.
- Mechanistic separability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ζ_topo/ψ_spin/ψ_jet disentangle path locking, threshold noise, and skeleton reconstruction.
- Operational utility: online J_Path estimation and coherence-window tuning suppress unwanted drift, control θ_warp/τ_align, and stabilize collimation.
Blind Spots
- Strong companion or spin–orbit coupling may require non-Markovian memory kernels and explicit companion torques.
- High-extinction/turbulent regions bias δθ inversion; higher angular resolution and multi-band calibration are needed.
Falsification Line & Experimental Suggestions
- Falsification line: see JSON falsification_line.
- Experiments:
- 2-D maps: overlay (t, PA_jet) and (t, δθ) with ω_p contours to separate steady deviations from externally driven precession;
- Skeleton engineering: vary inner-rim geometry and magnetic topology to scan ζ_topo impacts on κ_B and Π_⊥;
- Synchronous platforms: ALMA + IFS + VLBI + polarimetry to lock the d(δθ)/dt—κ_B—S_env triad;
- Environmental control: isolate σ_env, δΦ_ext and calibrate TBN effects on k_peak and Δr_knot.
External References
- Blandford, R. D., & Payne, D. G. Magneto-centrifugal winds and jets.
- Pudritz, R. E., et al. Disk winds and jet launching in star formation.
- Lai, D. Spin–disk misalignment and warps.
- Livio, M. Jet–ambient interactions and deflection.
- Frank, A., et al. Jets and outflows in star formation.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Index dictionary: δθ, d(δθ)/dt, PA_jet, ω_p/ω_n, θ_warp, τ_align, Δr_knot, Π_⊥, κ_B, S_env, Δ_SFR, k_peak (see Section II). SI units: angle °, time yr, length AU, frequency yr^-1, shear km s^-1 kpc^-1.
- Processing: axis inversion & attitude registration; precession–nutation spectral estimation; knot tracking & lateral momentum flux; polarization–magnetization alignment; error propagation (total_least_squares + errors-in-variables); hierarchical Bayes across source/geometry-band/environment layers.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key parameters vary < 15%; RMSE fluctuation < 10%.
- Layer robustness: S_env↑ → Δr_knot and Π_⊥ rise, KS_p falls; γ_Path>0 at > 3σ.
- Noise stress test: +5% channel drift → θ_Coh and ψ_jet increase; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior shifts < 8%; evidence difference ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.047; adding blind samples maintains ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/