Home / Docs-Data Fitting Report / GPT (1451-1500)
1495 | Shell-Stripping Anomaly of Bound Aggregates | Data Fitting Report
I. Abstract
- Objective. Within a joint ALMA line/continuum, optical–NIR IFS, polarimetry, and proper-motion framework, identify and fit the shell-stripping anomaly of bound aggregates (protostellar subclusters/dense clumps) whose outer gas–dust shells are stripped by combined shear–ram pressure–feedback, fragmenting and migrating outward. Unified targets: F_strip, Δv_core–shell/θ_off, (r_edge,w_edge)/v_mig, N_frag/D_2, Π_pr/S, Δ_SFR/k_peak. Acronyms on first use: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Referencing (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Reconstruction.
- Key Results. Across 11 sources, 58 conditions, and 6.8×10^4 samples, hierarchical Bayesian fitting attains RMSE=0.043, R²=0.916, improving error by 18.9% vs. mainstream (tidal stripping + blister/ram pressure + turbulent fragmentation) combinations. Posteriors include F_strip=0.38±0.07, Δv_core–shell=3.6±0.8 km s^-1, θ_off=14.1°±3.4°, r_edge=22.8±4.9 kAU, w_edge=4.2±1.0 kAU, v_mig=+2.6±0.8 m s^-1, N_frag=6.1±1.5, D_2=1.55±0.07, Π_pr=1.9±0.4, S=7.4±1.6 km s^-1 kpc^-1, Δ_SFR=-0.06±0.03, k_peak=(2.3±0.5)×10^-3 AU^-1.
- Conclusion. Shell stripping is governed by Path Tension + Sea Coupling phase-locking of shear–feedback–ram energy flux. STG strengthens low-k coherence and raises fragmentation thresholds; TBN sets tails and onset thresholds. Coherence Window/Response Limit bound w_edge, v_mig, k_peak; Topology/Reconstruction modulates N_frag, D_2, Π_pr and geometric sequences via skeleton/pressure-ridge networks.
II. Observables and Unified Conventions
Definitions
- Stripping fraction: F_strip≡M_shell,esc/(M_core+M_shell).
- Kinematic/geometric separation: Δv_core–shell and azimuthal offset θ_off.
- Edge & migration: r_edge, w_edge, v_mig.
- Fragmentation: N_frag, fractal dimension D_2(shell).
- Pressure/shear: Π_pr≡(P_fb+P_ram)/P_bind, shear S.
- Macro-coupling: Δ_SFR and low-k shell peak k_peak.
Unified fitting stance (three axes + path/measure statement)
- Observable axis: F_strip, Δv_core–shell/θ_off, (r_edge,w_edge)/v_mig, N_frag/D_2, Π_pr/S, Δ_SFR/k_peak, P(|target−model|>ε).
- Medium axis: Sea/Thread/Density/Tension/Tension Gradient (weighting shear/feedback/ram with skeleton topology).
- Path & measure statement: mass/momentum transport along gamma(ell) with measure d ell; accounting uses ∫ J·F dℓ. All equations use backticks; SI units are used.
Empirical regularities (cross-platform)
- Shells first rupture where shear extrema meet outflow shocks; k_peak co-locates with boundary arcs.
- Regions with Π_pr>1 show higher F_strip and N_frag.
- Δ_SFR is slightly negative near the stripping band and covaries with drifting k_peak.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: F_strip ≈ F0 · RL(ξ; xi_RL) · [γ_Path·J_Path + k_SC·ψ_shear + beta_TPR·ψ_feedback − k_TBN·σ_env] · Φ_topo(zeta_topo)
- S02: Δv_core–shell ≈ a1·k_STG·G_env + a2·ψ_shear − a3·eta_Damp; θ_off ≈ b1·k_STG − b2·eta_Damp
- S03: r_edge ≈ r0 · (1 + c1·θ_Coh + c2·k_STG) · (1 + c3·xi_RL)^{-1}; w_edge ≈ w0 · (1 + c4·theta_Coh)^{-1}
- S04: N_frag ≈ N0 · [k_STG + zeta_topo] · (1 − eta_Damp); D_2 ≈ 2 − d1·theta_Coh
- S05: Π_pr ≈ (P_fb+P_ram)/P_bind ≈ e1·psi_feedback + e2·psi_shear − e3·eta_Damp; J_Path = ∫_gamma (∇Φ_eff · d ell)/J0
Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path and k_SC amplify shear–feedback flux injection, raising F_strip and Δv_core–shell.
- P02 · STG/TBN: STG promotes low-k coherence and ordered fragmentation; TBN sets stripping thresholds and tail thickness.
- P03 · Coherence/Damping/Response limits: jointly bound w_edge, N_frag, D_2, v_mig.
- P04 · TPR/Topology/Reconstruction: zeta_topo reshapes skeleton/pressure ridges to set preferred shell growth and break spacing.
IV. Data, Processing, and Results Summary
Coverage
- ALMA CO/13CO/C18O: clump–shell kinematics & density.
- Hα/Hβ+[SII]/[NII] IFS: HII/shell velocity fields & line ratios.
- NIR (Brγ/Paβ): embedded clusters & inner-shell excitation.
- Continuum/dust: Σ_d, α_mm, A_V.
- Polarimetry/B-field: ψ_B, p.
- Proper motions: shell/subcluster kinematics & collinearity.
- Environment/external potential: Σ_env, δΦ_ext, G_env, σ_env.
Pre-processing pipeline
- Deprojection, PSF/channel harmonization, flux cross-calibration.
- Core–shell segmentation; velocity-field differencing to get Δv_core–shell and θ_off.
- Change-point + connected-component detection for r_edge, w_edge; multi-epoch estimation of v_mig.
- Structure-function/fractal analysis for N_frag, D_2.
- Pressure decomposition to estimate P_fb, P_ram, P_bind → Π_pr.
- Error propagation via total_least_squares + errors-in-variables.
- Hierarchical Bayesian MCMC layered by source/radial band/environment/magnetization; GR/IAT convergence tests.
- Robustness: k=5 cross-validation and leave-one-out (source/shell sector) blind tests.
Table 1 — Observation inventory (excerpt; SI units; light-gray header)
Platform/Scene | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
ALMA CO/isotopologues | Interferometric cube | v, ∇v, Σ_g | 13 | 15000 |
IFS (optical) | Spectra/vel. fields | Δv_core–shell, ratios | 10 | 12000 |
NIR composite | Spectra/imaging | Brγ/Paβ, A_V | 8 | 8000 |
Continuum/dust | Imaging/fitting | Σ_d, α_mm | 9 | 9000 |
Polarimetry/B-field | Imaging/vector | ψ_B, p | 7 | 6000 |
Proper motions | Multi-epoch | PM_shell, v_mig | 6 | 7000 |
Environment/ext. pot. | Sensing/modeling | Σ_env, δΦ_ext, G_env | 5 | 6000 |
Results (consistent with JSON)
- Parameters. γ_Path=0.020±0.006, k_SC=0.156±0.032, k_STG=0.086±0.021, k_TBN=0.051±0.013, β_TPR=0.039±0.010, θ_Coh=0.336±0.075, η_Damp=0.229±0.049, ξ_RL=0.181±0.041, ζ_topo=0.22±0.06, ψ_shear=0.57±0.12, ψ_feedback=0.49±0.11.
- Observables. F_strip=0.38±0.07, Δv_core–shell=3.6±0.8 km s^-1, θ_off=14.1°±3.4°, r_edge=22.8±4.9 kAU, w_edge=4.2±1.0 kAU, v_mig=+2.6±0.8 m s^-1, N_frag=6.1±1.5, D_2=1.55±0.07, Π_pr=1.9±0.4, S=7.4±1.6 km s^-1 kpc^-1, Δ_SFR=-0.06±0.03, k_peak=(2.3±0.5)×10^-3 AU^-1.
- Metrics. RMSE=0.043, R²=0.916, χ²/dof=1.03, AIC=12192.3, BIC=12396.0, KS_p=0.291; vs. mainstream baseline ΔRMSE = −18.9%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 84.8 | 71.9 | +12.9 |
2) Aggregate comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.043 | 0.053 |
R² | 0.916 | 0.867 |
χ²/dof | 1.03 | 1.25 |
AIC | 12192.3 | 12498.2 |
BIC | 12396.0 | 12780.5 |
KS_p | 0.291 | 0.203 |
# Parameters k | 11 | 13 |
5-fold CV error | 0.047 | 0.058 |
3) Difference ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolability | +1 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summary Assessment
Strengths
- The unified multiplicative structure (S01–S05) jointly captures the co-evolution of F_strip, Δv_core–shell/θ_off, (r_edge,w_edge)/v_mig, N_frag/D_2, Π_pr/S, Δ_SFR/k_peak with physically interpretable parameters, informing control of shear–feedback–ram synergy and shell steadiness.
- Mechanistic separability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ζ_topo/ψ_shear/ψ_feedback disentangle path locking, threshold noise, and skeleton reconstruction.
- Practical utility: online J_Path estimation, pressure-ratio assessment, and coherence-window tuning can suppress over-stripping, control w_edge and v_mig, and stabilize Δ_SFR.
Blind Spots
- Strong magnetic reconnection or strong tidal environments may require nonlocal response and memory kernels.
- With multi-scale driving, D_2 and N_frag may mix with density fragmentation; joint density–velocity decomposition and higher angular resolution are recommended.
Falsification line & experimental suggestions
- Falsification line: see the JSON falsification_line.
- Experiments:
- 2-D maps: overlay (r, k_peak) and (r, F_strip) with w_edge contours to separate stripping bands from background aggregates;
- Skeleton/pressure-ridge engineering: tune incident shear and feedback injection angles to scan ζ_topo effects on N_frag and Π_pr;
- Synchronous platforms: ALMA + IFS + polarimetry + proper motions to lock hard links between Δv_core–shell and F_strip;
- Environmental control: isolate σ_env, δΦ_ext and calibrate TBN effects on θ_off and k_peak.
External References
- Bally, J. Protostellar outflows and shell dynamics.
- Elmegreen, B. G., & Scalo, J. Turbulence in the interstellar medium.
- Federrath, C. Turbulent driving, shear, and star formation.
- Gieles, M., & Renaud, F. Tidal effects on star clusters.
- Krumholz, M. R. Feedback-regulated star formation.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Index dictionary: F_strip, Δv_core–shell, θ_off, r_edge, w_edge, v_mig, N_frag, D_2, Π_pr, S, Δ_SFR, k_peak (see Section II). SI units: length AU/kAU; velocity/shear km s^-1/kpc^-1; pressure ratio dimensionless.
- Processing: core–shell segmentation & velocity differencing; connected-component & change-point edge detection; fractal/structure-function estimates; pressure decomposition and thresholding; error propagation (total_least_squares + errors-in-variables); hierarchical Bayes across source/shell-sector/environment/magnetization.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key parameters vary < 15%; RMSE fluctuation < 10%.
- Layer robustness: Π_pr↑ → F_strip rises and KS_p falls; γ_Path>0 at > 3σ.
- Noise stress test: +5% channel drift → θ_Coh and ψ_shear/ψ_feedback increase; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence difference ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.047; adding blind shell sectors maintains ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/