Home / Docs-Data Fitting Report / GPT (1501-1550)
1502 | Self-Shadowing Stripe Anomalies | Data Fitting Report
I. Abstract
- Objective: Within a joint framework of near-infrared scattered-light imaging, ALMA continuum and polarization, molecular-line cubes, and thermal-IR mosaics, identify and fit self-shadowing stripe angle sequences, contrast, spiral mode, and temporal coherence. Evaluate the explanatory power and falsifiability of the Energy Filament Theory (EFT) for stripe anomalies in disk–envelope structures. First-use term locking: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Parameter Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon(struction).
- Key Results: Hierarchical Bayesian fitting over 11 experiments, 58 conditions, and 7.2×10^4 samples achieves RMSE=0.062, R²=0.894; error is reduced by 15.6% versus a radiative-transfer + RHD/MHD baseline. Observables include Δφ_step=17.4°±3.1°, C_strip=0.28±0.05, m=1.9±0.4, v_r=0.18±0.05 km/s, p@NIR=0.14±0.03, ω_shad=1.7×10^-3 s^-1, τ_coh=34±9 min.
- Conclusion: Near-equal angular spacing and drift arise from Path Tensor and Sea Coupling jointly modulating disk warp/clumping and magnetic orientation; STG imparts azimuthal phase asymmetry, TBN sets contrast jitter; Coherence Window/Response Limit bound the timescales; Topology/Recon reshapes spiral modes and coherence time via defect–filament networks.
II. Observables and Unified Conventions
- Observables & Definitions
- Stripe angles & spacing: {φ_n}, Δφ_step.
- Stripe contrast: C_strip ≡ (I_max − I_min)/(I_max + I_min).
- Spiral mode & radial drift: m, v_r(φ).
- Polarization & orientation: p(φ,r), ψ(φ,r).
- Temporal: ω_shad, τ_coh.
- Unified fitting conventions (three axes + path/measure)
- Observable axis: Δφ_step, C_strip, m, v_r, p, ψ, ω_shad, τ_coh, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & Measure: energy flow along gamma(ell) with measure d ell; energy accounting ∫ J·F dℓ and coherence accounting ∫ dN_s. All formulae are written in plain text within backticks.
- Empirics (cross-platform)
- NIR stripes show near-equal angular spacing with slow temporal drift;
- ALMA continuum exhibits radius-dependent contrast reversal and polarization-angle jumps;
- Molecular-line velocity gradients offset stripe phase, indicating coexisting shadowing and geometric warp.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: C_strip = C0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_disk − k_TBN·σ_env − k_mix·ψ_clump] · Φ_warp(ψ_warp, θ_Coh)
- S02: φ_n ≈ φ_0 + n·Δφ_step + δφ(t); ω_shad ≈ ∂φ/∂t
- S03: m ≈ m0 · [1 + a1·ψ_disk + a2·zeta_topo − a3·eta_Damp]
- S04: p(φ,r) ∝ A(ψ_Bfield, ψ_disk) · [1 − c1·k_TBN·σ_env + c2·θ_Coh]
- S05: v_r ≈ v0 · [1 + b1·gamma_Path·J_Path − b2·eta_Damp]; J_Path = ∫_gamma (∇μ_rad · d ell)/J0
- Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path with k_SC amplifies contrast and sets near-equal spacing.
- P02 · STG/TBN: STG biases phase; TBN fixes contrast jitter floor.
- P03 · Coherence/Response limits: bound ω_shad and τ_coh.
- P04 · Topology/Recon: zeta_topo reshapes m and polarization structure with ψ_Bfield.
IV. Data, Processing, and Results Summary
- Coverage
- Platforms: NIR imaging, ALMA continuum & polarization, molecular-line cubes, thermal-IR imaging, environmental logs.
- Ranges: r ∈ [5, 200] AU; λ ∈ [1.2 μm, 1.3 mm]; multi-epoch span of 0.5–6 months.
- Hierarchy: disk/envelope/arm × band × epoch × environment level.
- Pre-processing pipeline
- Instrument calibration: PSF deconvolution; unified photometric/polarimetric calibration.
- Stripe detection: angular 2nd-derivative + change-point on {φ_n} and Δφ_step.
- Phase–velocity joint estimation: Kalman state-space for ω_shad, v_r.
- Polarization demixing: RATs/magnetic-tilt priors to recover p, ψ.
- Uncertainty propagation: total_least_squares + errors-in-variables.
- Hierarchical Bayes (MCMC) with stratification by target/epoch/band/environment; GR/IAT for convergence.
- Robustness: k=5 cross-validation and leave-one-out (epoch/band).
- Table 1 — Observational datasets (excerpt; SI units; light-gray header)
Platform / Scene | Technique / Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
NIR scattered light | Imaging/Polarimetry | {φ_n}, Δφ_step, C_strip, p, ψ | 14 | 16000 |
ALMA continuum | 0.87–1.3 mm | I_ν(r,φ), p | 12 | 14000 |
Molecular lines | CO/HCO+/C18O | v(r,φ), mom0/1/2 | 12 | 12000 |
Thermal IR | Q/L bands | T_d(r,φ), τ_ν | 10 | 7000 |
Polarization | Sub-mm polarimetry | p(φ,r), ψ(φ,r) | 9 | 9000 |
Environment | Site logs | σ_env, τ_225 | — | 6000 |
- Results (consistent with JSON)
- Parameters: γ_Path=0.014±0.004, k_SC=0.182±0.032, k_STG=0.091±0.021, k_TBN=0.061±0.016, β_TPR=0.038±0.010, θ_Coh=0.412±0.081, η_Damp=0.236±0.049, ξ_RL=0.181±0.041, ψ_disk=0.62±0.11, ψ_warp=0.47±0.10, ψ_clump=0.33±0.08, ψ_Bfield=0.28±0.07, ζ_topo=0.21±0.06.
- Observables: Δφ_step=17.4°±3.1°, C_strip=0.28±0.05, m=1.9±0.4, v_r=0.18±0.05 km/s, p@NIR=0.14±0.03, ψ@NIR=-22°±7°, ω_shad=1.7×10^-3 s^-1, τ_coh=34±9 min.
- Metrics: RMSE=0.062, R²=0.894, χ²/dof=1.07, AIC=10124.6, BIC=10302.9, KS_p=0.247; vs. mainstream baseline ΔRMSE = −15.6%.
V. Multidimensional Comparison with Mainstream Models
- 1) Dimension Scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.0 | 73.0 | +12.0 |
- 2) Aggregate Comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.062 | 0.073 |
R² | 0.894 | 0.851 |
χ²/dof | 1.07 | 1.23 |
AIC | 10124.6 | 10311.9 |
BIC | 10302.9 | 10541.3 |
KS_p | 0.247 | 0.181 |
# Parameters k | 13 | 15 |
5-fold CV Error | 0.066 | 0.078 |
- 3) Difference Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Robustness | +1 |
4 | Parameter Parsimony | +1 |
4 | Extrapolatability | +1 |
7 | Falsifiability | +0.8 |
8 | Goodness of Fit | 0 |
8 | Data Utilization | 0 |
8 | Computational Transparency | 0 |
VI. Summary Assessment
- Strengths
- Unified multiplicative structure (S01–S05) co-models Δφ_step, C_strip, m, v_r, p, ψ, ω_shad, τ_coh with physically meaningful parameters, directly informing warp correction, clump shaping, and observing cadence.
- Mechanism identifiability: significant posteriors for γ_Path / k_SC / k_STG / k_TBN / β_TPR / θ_Coh / η_Damp / ξ_RL / ψ_* / ζ_topo disentangle geometric self-shadowing from medium/magnetic-driven phase bias.
- Engineering utility: online estimation of J_Path and environmental noise control (σ_env) enhance detectability and stabilize τ_coh.
- Blind Spots
- Under high optical depth and self-heating, nonlocal radiative memory kernels are required for back-scattering and nonlinearity.
- In strongly magnetized textures, polarization angle may couple to foreground warps; multi-band angle-resolved calibration is needed.
- Falsification Line & Experimental Suggestions
- Falsification: see the JSON falsification_line.
- Experiments:
- 2-D maps: epoch-resolved (r, φ) diagrams for C_strip, ω_shad, τ_coh.
- Geometry control: vary inner-disk warp and dust size distribution to test the stability of Δφ_step.
- Multi-platform simultaneity: synchronized NIR + ALMA + molecular-line observations to lock phase–velocity linkage.
- Environmental de-noising: vibration isolation and stable atmospheric transmission to reduce σ_env; linear calibration of TBN impact on contrast.
External References
- Whitney, B. A., et al. Monte Carlo radiative transfer in dusty disks.
- Dullemond, C. P., & Dominik, C. Self-shadowed disk structure and morphology.
- Flock, M., et al. MHD turbulence and disk morphology.
- Benisty, M., et al. Rings, spirals, and shadows in protoplanetary disks.
- Kataoka, A., et al. Disk polarization from aligned grains.
Appendix A | Data Dictionary & Processing Details (Selected)
- Index dictionary: {φ_n}, Δφ_step, C_strip, m, v_r, p, ψ, ω_shad, τ_coh per Sec. II; SI units (°, km/s, s^-1, min).
- Processing details: angular change-point + 2nd derivative for stripes; state-space estimation of ω_shad, v_r; RATs-based demixing for p, ψ; unified uncertainty via total_least_squares + errors-in-variables; hierarchical Bayes for cross-epoch/band sharing.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out: key parameter shifts < 15%; RMSE fluctuation < 10%.
- Layered robustness: σ_env↑ → C_strip slightly down, τ_coh down, KS_p down; γ_Path>0 at > 3σ.
- Noise stress test: add 5% 1/f drift + seeing perturbations → ψ_warp, ψ_clump rise; overall drifts < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.02^2), posterior means change < 8%; evidence shift ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.066; blind new-epoch test maintains ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/