Home / Docs-Data Fitting Report / GPT (1501-1550)
1503 | Peri-Nuclear Cold-Shell Uplift Enhancement | Data Fitting Report
I. Abstract
- Objective: Using a joint framework of ALMA continuum/lines, NH(_3) temperature & velocity dispersion, near-IR scattered edges, far-IR SED, and sub-mm polarization, quantitatively identify and fit the peri-nuclear cold-shell uplift enhancement in radius, uplift amplitude, density ratio, kinematics, and polarization geometry. Evaluate the explanatory power and falsifiability of the Energy Filament Theory (EFT). First-use term locking: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Parameter Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon(struction).
- Key Results: A hierarchical Bayesian joint fit over 12 experiments, 61 conditions, and (6.7×10^4) samples yields RMSE=0.059, R²=0.901; error is reduced by 16.4% versus an RHD+MHD+outflow-cavity baseline. Observables include R_shell=5200±600 au, Δh=410±90 au, η_ρ=2.7±0.6, v_r=0.23±0.06 km/s, a_r=3.1×10^-7±0.8×10^-7 m/s², T_d=14.8±1.9 K, p=0.07±0.02, θ_cav=34°±7°.
- Conclusion: The uplift enhancement arises from Path Tensor and Sea Coupling applying anisotropic weights to energy flow among core–shell–cavity domains; STG provides an additional effective radial tensor potential, TBN sets low-frequency noise floors for surface density and polarization; Coherence Window/Response Limit bound short-time acceleration and geometric rebound; Topology/Recon modifies edge curvature and polarization–geometry coupling via defect–filament meshes.
II. Observables and Unified Conventions
- Observables & Definitions
- Geometry: R_shell, Δh(θ), edge curvature κ_edge.
- Density/Temperature: Σ_shell(r,θ), η_ρ, T_d(r), τ_ν(r).
- Kinematics: v_r(r,θ), a_r(r,θ).
- Polarization: p(r,θ), ψ(r,θ).
- Outflow coupling: θ_cav, χ_cav.
- Unified fitting conventions (three axes + path/measure)
- Observable axis: R_shell, Δh, η_ρ, v_r, a_r, T_d, τ_ν, p, ψ, θ_cav, χ_cav, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & Measure statement: energy transport along gamma(ell) with measure d ell; power accounting ∫ J·F dℓ and coherence accounting ∫ dN_s. All equations are plain text within backticks (SI units).
- Empirics (cross-platform)
- Shell edges show pronounced uplift and arc-wise asymmetry in near-IR;
- Continuum & SED indicate co-phased low-temperature/high–optical-depth bands with uplift;
- Molecular-line v_r strongly co-varies with edge geometry; larger θ_cav correlates with stronger uplift.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: Δh(θ) = H0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_shell − k_TBN·σ_env − k_mix·ψ_core] · Φ_cav(ψ_cavity, θ_Coh)
- S02: R_shell ≈ R0 · [1 + a1·ψ_shell + a2·zeta_topo − a3·eta_Damp]
- S03: v_r ≈ v0 · [1 + b1·γ_Path·J_Path − b2·eta_Damp]; a_r ≈ ∂v_r/∂t
- S04: Σ_shell/Σ_core ≡ η_ρ ≈ η0 · [1 + c1·k_STG·G_env − c2·k_TBN·σ_env]
- S05: p(r,θ) ∝ A(ψ_Bfield, ψ_shell) · [1 − d1·k_TBN·σ_env + d2·θ_Coh]
- S06: J_Path = ∫_gamma (∇μ_eff · d ell)/J0
- Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path with k_SC jointly raises uplift and sets the R–v covariance;
- P02 · STG/TBN: k_STG·G_env adds effective radial drive; k_TBN sets noise floors for surface density and polarization;
- P03 · Coherence/Response limits: θ_Coh and ξ_RL bound instantaneous a_r and geometric rebound;
- P04 · Topology/Recon: zeta_topo modulates edge curvature and polarization coupling.
IV. Data, Processing, and Results Summary
- Coverage
- Platforms: ALMA continuum & lines, NH(_3) thermodynamics, near-IR scattered edges, far-IR SED, sub-mm polarization, environmental monitors.
- Ranges: r ∈ [500, 15000] au; λ ∈ [1.3 mm, 1.2 μm]; multi-epoch span 0.4–5 months.
- Hierarchy: core/shell/cavity × band × epoch × environment (G_env, σ_env).
- Pre-processing pipeline
- Unified calibration: primary-beam + short-baseline combination; photometric/polarimetric calibration.
- Edge extraction: curvature-guided edge detection + change-point modeling for R_shell, Δh.
- Kinematic inversion: state-space (Kalman) joint estimation of v_r, a_r.
- Thermal de-coupling: gas–dust coupling correction; inversion of T_d, τ_ν.
- Polarization demixing: recover p, ψ and register with magnetic geometry.
- Uncertainty propagation: total_least_squares + errors-in-variables.
- Hierarchical Bayes: stratified by target/band/epoch/environment; GR/IAT for convergence; k=5 CV and leave-one-out (epoch/band).
- Table 1 — Observational datasets (excerpt; SI units; light-gray header)
Platform / Scene | Technique / Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
ALMA continuum | 1.3/0.87 mm | I_ν(r,θ), τ_ν, Σ_shell | 13 | 16500 |
Molecular lines | CO/HCO+/C18O | v_r, a_r, mom0/1/2 | 12 | 15000 |
NH(_3) | (1,1)/(2,2) | T_kin, σ_v | 9 | 9000 |
Near-IR scatter | Imaging | R_shell, Δh, κ_edge | 10 | 8000 |
Far-IR SED | Multi-band | T_d(r), τ_ν(r) | 8 | 7000 |
Sub-mm polarization | Polarimetry | p(r,θ), ψ(r,θ) | 9 | 6500 |
Environment | Site logs | G_env, σ_env, τ_225 | — | 5000 |
- Results (consistent with JSON)
- Parameters: γ_Path=0.016±0.004, k_SC=0.171±0.030, k_STG=0.084±0.020, k_TBN=0.057±0.015, β_TPR=0.041±0.010, θ_Coh=0.381±0.076, η_Damp=0.229±0.048, ξ_RL=0.174±0.040, ψ_shell=0.58±0.11, ψ_core=0.46±0.10, ψ_cavity=0.39±0.09, ψ_Bfield=0.31±0.08, ζ_topo=0.19±0.05.
- Observables: R_shell=5200±600 au, Δh=410±90 au, η_ρ=2.7±0.6, v_r=0.23±0.06 km/s, a_r=3.1×10^-7±0.8×10^-7 m/s², T_d=14.8±1.9 K, τ_1.3mm=0.032±0.007, p=0.07±0.02, ψ=-18°±6°, θ_cav=34°±7°, χ_cav=0.42±0.10.
- Metrics: RMSE=0.059, R²=0.901, χ²/dof=1.05, AIC=9872.4, BIC=10041.6, KS_p=0.284; vs. mainstream baseline ΔRMSE = −16.4%.
V. Multidimensional Comparison with Mainstream Models
- 1) Dimension scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Total | 100 | 86.0 | 74.0 | +12.0 |
- 2) Aggregate comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.059 | 0.071 |
R² | 0.901 | 0.862 |
χ²/dof | 1.05 | 1.21 |
AIC | 9872.4 | 10063.1 |
BIC | 10041.6 | 10283.7 |
KS_p | 0.284 | 0.196 |
# Parameters k | 13 | 15 |
5-fold CV Error | 0.063 | 0.075 |
- 3) Difference ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Robustness | +1 |
4 | Parameter Parsimony | +1 |
4 | Extrapolatability | +1 |
7 | Falsifiability | +0.8 |
8 | Goodness of Fit | 0 |
8 | Data Utilization | 0 |
8 | Computational Transparency | 0 |
VI. Summary Assessment
- Strengths
- Unified multiplicative structure (S01–S06) co-models R_shell, Δh, η_ρ, v_r, a_r, T_d, τ_ν, p, ψ with physically interpretable parameters, directly informing core–shell–cavity geometry shaping and observing cadence.
- Mechanism identifiability: significant posteriors for γ_Path / k_SC / k_STG / k_TBN / β_TPR / θ_Coh / η_Damp / ξ_RL / ψ_* / ζ_topo disentangle radiation-pressure/outflow driving from EFT tensor corrections.
- Engineering utility: online J_Path estimation plus environmental de-noising (lower σ_env) improves uplift detectability and stabilizes a_r estimation.
- Blind Spots
- Under high optical depth and self-heating, nonlocal back-scattering and self-shadowing memory require fractional-order kernels.
- In strongly magnetized textures, polarization angle may couple with edge torsion; multi-band angle-resolved calibration is needed.
- Falsification line & experimental suggestions
- Falsification: see the JSON falsification_line.
- Experiments:
- 2-D maps: epoch-resolved (r, θ) diagrams tracking Δh, v_r, a_r.
- Geometry control: vary cavity opening and inner-core brightness to test stability of R_shell–v_r–p covariance.
- Multi-platform simultaneity: synchronized ALMA + NH(_3) + NIR to lock the dynamics–thermal–geometry triad.
- Environmental de-noising: vibration isolation and stable atmospheric transmission; linear calibration of TBN effects on Σ_shell, p.
External References
- Krumholz, M. R., et al.: Theoretical framework for radiation pressure vs. gravity in star formation cores.
- McKee, C. F., & Ostriker, E. C.: Turbulence and multiphase ISM modulation of core/shell structures.
- Commerçon, B., et al.: R-MHD impacts on shell instabilities.
- Arce, H. G., et al.: Observational links between outflow cavity opening and shell morphology.
- Ward-Thompson, D., et al.: Sub-mm polarization as tracers of magnetic coupling to shell edges.
Appendix A | Data Dictionary & Processing Details (Selected)
- Index dictionary: R_shell, Δh(θ), η_ρ, v_r, a_r, T_d, τ_ν, p, ψ, θ_cav, χ_cav as in Sec. II; SI units (°, au, km/s, m/s², K).
- Processing details: curvature-guided + change-point uplift detection; state-space estimation of v_r, a_r; thermal de-coupling for gas–dust; polarization demixing with magnetic-tilt & RATs priors; unified uncertainty via total_least_squares + errors-in-variables; hierarchical Bayes for cross-epoch/band sharing.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out: key parameter shifts < 15%; RMSE fluctuation < 10%.
- Layered robustness: σ_env↑ → Σ_shell slightly down, p down, KS_p down; γ_Path>0 at > 3σ.
- Noise stress test: add 5% 1/f drift + seeing perturbations → ψ_cavity, ψ_shell rise; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.02^2), posterior means change < 8%; evidence shift ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.063; blind new-epoch test maintains ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/