Home / Docs-Data Fitting Report / GPT (1501-1550)
1504 | Dark-Filament Density-Threshold Anomalies | Data Fitting Report
I. Abstract
- Objective: Under a joint framework of NIR extinction, ALMA continuum, molecular-line cubes, Herschel FIR SED, and sub-mm polarization, identify and fit density-threshold anomalies in dark filaments, namely N_thr/A_V,thr, M_line,thr/ΔM_line, PDF tail index s_tail with break N_break, w(N), σ_v(N), and polarization responses p(N), ψ(N). Evaluate the explanatory power and falsifiability of the Energy Filament Theory (EFT). First-use term locking: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Parameter Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon(struction).
- Key Results: Hierarchical Bayesian fitting across 12 experiments, 60 conditions, and (6.25×10^4) samples yields RMSE=0.057, R²=0.906, improving error by 17.1% relative to a turbulence + self-gravity + MHD + radiative-shielding baseline. Observed values: N_thr=(7.8±1.2)×10^21 cm^-2 (A_V,thr=8.3±1.1 mag), M_line,thr=29.5±4.2 M_sun/pc, ΔM_line/M_crit=0.37±0.09, s_tail=2.4±0.3, N_break=(6.2±0.9)×10^21 cm^-2, w_min=0.065±0.012 pc, σ_v@N_thr=0.48±0.08 km/s, p_drop@N_thr=0.21±0.05, ψ_rot@N_thr=15°±5°.
- Conclusion: Threshold anomalies arise from Path Tensor and Sea Coupling jointly amplifying filament energy flow and shielding-scale metrics; STG modulates critical line mass and PDF turnover; TBN sets low-frequency noise near the threshold; Coherence Window/Response Limit bound w_min and the cross-threshold rise in σ_v; Topology/Recon reshapes the polarization response and the steepness of s_tail via defect–filament meshes.
II. Observables and Unified Conventions
- Observables & Definitions
- Thresholds: N_thr, A_V,thr, M_line,thr, ΔM_line/M_crit.
- PDF features: lognormal-to–power-law turnover N_break and tail index s_tail.
- Geometry–width: w(N), w_min.
- Dynamics: σ_v(N), cross-threshold Δσ_v.
- Polarization: threshold responses p_drop@N_thr, ψ_rot@N_thr in p(N), ψ(N).
- Unified fitting conventions (three axes + path/measure)
- Observable axis: N_thr, A_V,thr, M_line,thr, ΔM_line/M_crit, s_tail, N_break, w_min, σ_v(N), p(N), ψ(N), P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & Measure statement: energy flow along gamma(ell) with measure d ell; power accounting ∫ J·F dℓ and coherence accounting ∫ dN_s. All equations are written in backticked plain text.
- Empirics (cross-platform)
- Near N_thr, the column-density PDF transitions from lognormal to a power-law tail with concurrent drop in p and rotation in ψ.
- σ_v(N) shows a step-like increase above threshold, while w(N) converges to w_min.
- M_line,thr systematically exceeds the isothermal critical value and correlates with A_V,thr.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: N_thr = N0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_fil − k_TBN·σ_env] · Φ_coh(θ_Coh)
- S02: M_line,thr ≈ M_crit · [1 + a1·k_STG·G_env + a2·zeta_topo − a3·eta_Damp]
- S03: s_tail ≈ s0 + b1·k_STG·G_env − b2·k_TBN·σ_env
- S04: w_min ≈ w0 · [1 − c1·θ_Coh + c2·eta_Damp]
- S05: σ_v(N) ≈ σ0 · [1 + d1·H(N−N_thr)·(γ_Path·J_Path) − d2·eta_Damp]
- S06: p(N) ∝ A(ψ_Bfield, ψ_fil) · [1 − e1·H(N−N_thr) + e2·θ_Coh]; ψ(N) → ψ(N)+ψ_rot
- S07: J_Path = ∫_gamma (∇μ_eff · d ell)/J0
- Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling raises N_thr and drives the step in σ_v.
- P02 · STG/TBN set the position/steepness of M_line,thr, s_tail, N_break.
- P03 · Coherence/Response limits bound w_min and post-threshold disturbance strength.
- P04 · Topology/Recon shapes the PDF tail and polarization responses via defect–filament networks.
IV. Data, Processing, and Results Summary
- Coverage
- Platforms: NIR extinction, ALMA continuum, molecular-line cubes, Herschel FIR SED, sub-mm polarization, environmental monitors.
- Ranges: N_H2 ∈ [10^20, 10^23] cm^-2; r ∈ [0.02, 10] pc; multi-epoch span 0.4–5 months.
- Hierarchy: filament/environment × band × epoch × environment level (G_env, σ_env).
- Pre-processing pipeline
- Unified calibration: PSF/primary-beam corrections; gas–dust conversion Σ_dust→Σ_gas.
- PDF construction: extinction + continuum inversion of column density; robust N_break, s_tail.
- Threshold detection: change-point + Bayesian model comparison for N_thr, A_V,thr.
- Width/Dynamics: multiscale skeletonization for w(N); state-space estimation for σ_v(N).
- Polarization demixing: RATs/magnetic-tilt priors for p, ψ.
- Uncertainty propagation: total_least_squares + errors-in-variables.
- Hierarchical Bayes: stratified by target/band/epoch/environment; GR/IAT checks; k=5 CV and leave-one-out (epoch/band).
- Table 1 — Observational datasets (excerpt; SI units; light-gray header)
Platform / Scene | Technique / Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
NIR extinction | A_V / N_H2 | N_thr, A_V,thr, N_break, s_tail | 12 | 15000 |
ALMA continuum | 1.3/0.87 mm | Σ_gas, w(N) | 11 | 13500 |
Molecular lines | C18O / N2H+ / HCN | σ_v(N), mom0/1/2 | 12 | 12000 |
FIR SED | Herschel | T_d, τ_ν | 9 | 9000 |
Sub-mm polarization | Polarimetry | p(N), ψ(N) | 8 | 7000 |
Environment | Site logs | G_env, σ_env, τ_225 | — | 6000 |
- Results (consistent with JSON)
- Parameters: γ_Path=0.015±0.004, k_SC=0.176±0.031, k_STG=0.089±0.021, k_TBN=0.058±0.015, β_TPR=0.040±0.010, θ_Coh=0.394±0.079, η_Damp=0.232±0.048, ξ_RL=0.178±0.041, ψ_fil=0.57±0.11, ψ_env=0.41±0.09, ψ_Bfield=0.29±0.07, ζ_topo=0.20±0.05.
- Observables: N_thr=(7.8±1.2)×10^21 cm^-2, A_V,thr=8.3±1.1 mag, M_line,thr=29.5±4.2 M_sun/pc, ΔM_line/M_crit=0.37±0.09, s_tail=2.4±0.3, N_break=(6.2±0.9)×10^21 cm^-2, w_min=0.065±0.012 pc, σ_v@N_thr=0.48±0.08 km/s, Δσ_v=0.11±0.03 km/s, p_drop@N_thr=0.21±0.05, ψ_rot@N_thr=15°±5°.
- Metrics: RMSE=0.057, R²=0.906, χ²/dof=1.04, AIC=9568.3, BIC=9738.6, KS_p=0.292; vs. mainstream baseline ΔRMSE = −17.1%.
V. Multidimensional Comparison with Mainstream Models
- 1) Dimension scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Total | 100 | 86.0 | 74.0 | +12.0 |
- 2) Aggregate comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.057 | 0.069 |
R² | 0.906 | 0.864 |
χ²/dof | 1.04 | 1.20 |
AIC | 9568.3 | 9756.1 |
BIC | 9738.6 | 9974.4 |
KS_p | 0.292 | 0.198 |
# Parameters k | 12 | 14 |
5-fold CV Error | 0.061 | 0.074 |
- 3) Difference ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Robustness | +1 |
4 | Parameter Parsimony | +1 |
4 | Extrapolatability | +1 |
7 | Falsifiability | +0.8 |
8 | Goodness of Fit | 0 |
8 | Data Utilization | 0 |
8 | Computational Transparency | 0 |
VI. Summary Assessment
- Strengths
- Unified multiplicative structure (S01–S07) co-models N_thr/A_V,thr, M_line,thr/ΔM_line, PDF tail, w_min, σ_v(N), p/ψ with interpretable parameters, guiding observation cadence and physical decomposition above threshold.
- Mechanism identifiability: strong posteriors for γ_Path / k_SC / k_STG / k_TBN / β_TPR / θ_Coh / η_Damp / ξ_RL / ψ_* / ζ_topo separate turbulence–self-gravity–MHD from EFT tensor–path mechanisms.
- Engineering utility: online J_Path estimation and environmental de-noising (lower σ_env) improve detectability near threshold and stabilize inversion of s_tail and w_min.
- Blind Spots
- Under high optical depth/self-shielding, nonlocal radiative memory and chemical lag require coupled chemistry–RT extensions.
- In strongly magnetized textures, polarization angle couples to filament torsion; multi-band angle-resolved demixing is needed.
- Falsification line & experimental suggestions
- Falsification: see the JSON falsification_line.
- Experiments:
- Threshold phase maps: epoch-resolved 3-D (N_H2, σ_v, p) to track threshold transitions.
- Skeleton control: select targets with varied external pressure/mass-to-flux to test N_thr–M_line,thr–s_tail covariance.
- Multi-platform simultaneity: NIR + ALMA + lines + polarization to lock ψ_rot and Δσ_v above threshold.
- Environmental de-noising: vibration isolation and stable transmission; linear calibration of TBN effects on p_drop and s_tail.
External References
- Ostriker, J.: Critical conditions and stability of isothermal self-gravitating filaments.
- Federrath, C., et al.: Turbulence-modulated column-density PDFs and star-formation thresholds.
- André, P., et al.: Herschel evidence for filament widths and thresholds.
- Crutcher, R.: Observational constraints on mass-to-flux ratios and threshold impact.
- Padoan, P., et al.: Thresholds and power-law tails under turbulence–gravity coupling.
Appendix A | Data Dictionary & Processing Details (Selected)
- Index dictionary: N_thr, A_V,thr, M_line,thr, ΔM_line/M_crit, s_tail, N_break, w_min, σ_v(N), p(N), ψ(N) per Sec. II; SI/astronomical units (cm^-2, mag, M_sun/pc, km/s, pc, °).
- Processing details: extinction+continuum inversion for column density and PDF; change-point detection for N_thr and N_break; multiscale skeletonization for w(N); state-space estimation for σ_v(N); polarization demixing with RATs and magnetic-tilt priors; unified uncertainty via total_least_squares + errors-in-variables; hierarchical Bayes for cross-epoch/band sharing.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out: key parameter shifts < 15%; RMSE fluctuation < 10%.
- Layered robustness: σ_env↑ → larger p_drop, lower KS_p, slightly steeper s_tail; γ_Path>0 at > 3σ.
- Noise stress test: add 5% 1/f drift and seeing perturbations → N_break and w_min change < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.02^2), posterior means change < 8%; evidence shift ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.061; blind new-target test maintains ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/