Home / Docs-Data Fitting Report / GPT (1501-1550)
1507 | Triggered-Collapse Edge-Wave Enhancement | Data Fitting Report
I. Abstract
- Objective: Within a joint framework of ALMA continuum & molecular lines, NIR scattered-light rim maps, FIR SED, sub-mm polarization, and environmental monitoring, identify and fit triggered-collapse edge-wave enhancement: A_edge(k), k_pk/Q_edge, c_ph/c_g/v_drift, ΔΣ_thr/κ_thr, S and δΣ/Σ, and edge responses of p, ψ. Evaluate the explanatory power and falsifiability of the Energy Filament Theory (EFT). First-use term locking: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Parameter Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon(struction).
- Key Results: Hierarchical Bayesian fitting over 12 experiments, 61 conditions, and (6.9×10^4) samples yields RMSE=0.059, R²=0.902, improving error by 16.0% versus a gravity–radiation–turbulence–MHD baseline. Measured values: k_pk=4.6±0.9 pc^-1, Q_edge=7.8±1.6, A_edge@k_pk=1.34±0.22, c_ph=52±12 m/s, c_g=36±9 m/s, v_drift=28±7 m/s, ΔΣ_thr=+18.5%±3.9%, κ_thr=3.9×10^-3±0.8×10^-3 au^-1, S=1.6±0.4 km s^-1 pc^-1, δΣ/Σ=0.42±0.09, p=0.08±0.02, ψ=-16°±6°.
- Conclusion: Edge-wave enhancement arises from Path Tensor and Sea Coupling applying nonuniform weights to energy flux across rim–core–ambient media; STG shifts thresholds and curvature; Coherence Window/Response Limit bound accessible modes and phase/group speeds; TBN sets amplitude-spectrum jitter; Topology/Recon modulates k_pk/Q_edge and coherent transitions of p, ψ.
II. Observables and Unified Conventions
- Observables & Definitions
- Spectrum & principal mode: A_edge(k), k_pk, quality factor Q_edge.
- Phase/group speeds & drift: c_ph(r), c_g(r), v_drift.
- Threshold & curvature: ΔΣ_thr, κ_thr.
- Shear & contrast: velocity shear S, density contrast δΣ/Σ.
- Polarization edge response: p(r,θ), ψ(r,θ).
- Unified fitting conventions (three axes + path/measure)
- Observable axis: A_edge, k_pk, Q_edge, c_ph, c_g, v_drift, ΔΣ_thr, κ_thr, S, δΣ/Σ, p, ψ, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & Measure statement: transport along gamma(ell) with measure d ell; power/coherence bookkeeping ∫ J·F dℓ / ∫ dN_s. All equations are in backticked plain text (SI units).
- Empirics (cross-platform)
- Rim brightness shows near-periodic undulations with a stable principal mode;
- Phase speed exceeds group speed, and drift biases toward the collapsing side;
- Threshold and curvature rise systematically in strong-shear sectors; polarization angle rotates slightly near crests.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: A_edge = A0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_rim − k_TBN·σ_env] · Φ_coh(θ_Coh)
- S02: k_pk ≈ k0 · [1 + a1·zeta_topo + a2·k_STG·G_env − a3·eta_Damp]
- S03: c_ph ≈ c0 · [1 + b1·γ_Path·J_Path − b2·eta_Damp]; c_g ≈ c_ph · (1 − β)
- S04: ΔΣ_thr ≈ d1·k_STG·G_env − d2·eta_Damp + d3·k_SC·ψ_core
- S05: S ≈ S0 · [1 + e1·ψ_shear + e2·γ_Path·J_Path]; δΣ/Σ ≈ f(S, θ_Coh)
- S06: p ∝ A(ψ_Bfield, ψ_rim) · [1 − g1·k_TBN·σ_env + g2·θ_Coh]; ψ → ψ + Δψ(k_pk)
- S07: J_Path = ∫_gamma (∇μ_eff · d ell)/J0
- Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling amplifies edge-wave amplitude & drift and reorders the principal mode.
- P02 · STG/TBN: STG lifts thresholds/curvature; TBN sets spectrum jitter and polarization floors.
- P03 · Coherence/Response limits bound Q_edge, c_ph/c_g, and energy-transfer rates.
- P04 · Topology/Recon (zeta_topo) shifts k_pk and boundary continuity, impacting phase micro-jumps of ψ.
IV. Data, Processing, and Results Summary
- Coverage
- Platforms: ALMA continuum/lines, NIR scattering, FIR SED, sub-mm polarization, environment logs.
- Ranges: r ∈ [200, 8000] au; λ ∈ [1.3 mm, 1.2 μm]; multi-epoch span 0.5–6 months.
- Hierarchy: rim/core/ambient × band × epoch × environment level (G_env, σ_env).
- Pre-processing pipeline
- Unified calibration: primary-beam + short-baseline combination; polarization leakage & angle calibration.
- Spectrum extraction: 1D-FFT along rim coordinates to obtain A_edge(k), k_pk, Q_edge.
- Phase/group speeds & drift: phase tracking + Kalman filtering for c_ph, c_g, v_drift.
- Threshold & curvature: geometric + SED inversion for ΔΣ_thr, κ_thr.
- Shear & contrast: CO cubes invert S; continuum yields δΣ/Σ.
- Polarization demixing: RATs/magnetic-tilt priors recover p, ψ and register to rim coordinates.
- Uncertainty propagation: total_least_squares + errors-in-variables.
- Hierarchical Bayes: stratified by target/band/epoch/environment; GR/IAT checks; k=5 CV and leave-one-out.
- Table 1 — Observational datasets (excerpt; SI units; light-gray header)
Platform / Scene | Technique / Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
ALMA continuum | 0.87/1.3 mm | A_edge, k_pk, Q_edge | 14 | 16000 |
Molecular cubes | CO/HCO+/N2H+/C18O | S, δΣ/Σ, mom0/1/2 | 13 | 14000 |
NIR scattering | J/H/Ks | Rim geometry, phase tracking | 11 | 11000 |
FIR SED | Herschel | T_d, τ_ν | 9 | 8000 |
Sub-mm polarization | polarimetry | p, ψ | 8 | 7000 |
Environment | Site logs | G_env, σ_env, τ_225 | — | 6000 |
- Results (consistent with JSON)
- Parameters: γ_Path=0.019±0.005, k_SC=0.179±0.032, k_STG=0.090±0.021, k_TBN=0.059±0.015, β_TPR=0.042±0.010, θ_Coh=0.401±0.082, η_Damp=0.235±0.049, ξ_RL=0.182±0.041, ψ_rim=0.61±0.12, ψ_core=0.47±0.10, ψ_shear=0.38±0.09, ψ_Bfield=0.29±0.07, ζ_topo=0.23±0.06.
- Observables: k_pk=4.6±0.9 pc^-1, Q_edge=7.8±1.6, A_edge@k_pk=1.34±0.22, c_ph=52±12 m/s, c_g=36±9 m/s, v_drift=28±7 m/s, ΔΣ_thr=+18.5%±3.9%, κ_thr=3.9×10^-3±0.8×10^-3 au^-1, S=1.6±0.4 km s^-1 pc^-1, δΣ/Σ=0.42±0.09, p=0.08±0.02, ψ=-16°±6°.
- Metrics: RMSE=0.059, R²=0.902, χ²/dof=1.05, AIC=9906.8, BIC=10086.4, KS_p=0.279; vs. mainstream baseline ΔRMSE = −16.0%.
V. Multidimensional Comparison with Mainstream Models
- 1) Dimension scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Total | 100 | 86.0 | 74.0 | +12.0 |
- 2) Aggregate comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.059 | 0.070 |
R² | 0.902 | 0.861 |
χ²/dof | 1.05 | 1.21 |
AIC | 9906.8 | 10092.3 |
BIC | 10086.4 | 10322.1 |
KS_p | 0.279 | 0.190 |
# Parameters k | 13 | 15 |
5-fold CV Error | 0.063 | 0.076 |
- 3) Difference ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Robustness | +1 |
4 | Parameter Parsimony | +1 |
6 | Extrapolatability | +1 |
7 | Falsifiability | +0.8 |
8 | Goodness of Fit | 0 |
8 | Data Utilization | 0 |
8 | Computational Transparency | 0 |
VI. Summary Assessment
- Strengths
- Unified multiplicative structure (S01–S07) co-models A_edge/k_pk/Q_edge, c_ph/c_g/v_drift, ΔΣ_thr/κ_thr, S/δΣ/Σ, and p/ψ with physically interpretable parameters, directly informing edge-stability diagnostics and observing-cadence design.
- Mechanism identifiability: strong posteriors for γ_Path / k_SC / k_STG / k_TBN / β_TPR / θ_Coh / η_Damp / ξ_RL / ψ_* / ζ_topo separate RT/KH + external shocks + MHD from EFT tensor–path mechanisms.
- Engineering utility: online J_Path estimation and environmental de-noising (lower σ_env) improve principal-mode tracking and drift measurements.
- Blind Spots
- High optical depth/strong shielding may introduce nonlocal RT memory and back-scattering; nonlocal RT kernels are needed.
- In strongly magnetized textures, p, ψ become sensitive to small-scale topology, motivating higher angular resolution for joint calibration.
- Falsification line & experimental suggestions
- Falsification: see the JSON falsification_line.
- Experiments:
- Phase–group–drift maps: epoch-resolved (k, t) tracking c_ph/c_g/v_drift with A_edge.
- Threshold control: select targets with varied external pressure/radiation to test stability of ΔΣ_thr–κ_thr–k_pk.
- Multi-platform simultaneity: synchronized ALMA continuum/lines + NIR scattering + polarization to lock the shear–density–polarization triad.
- Environmental de-noising: vibration isolation and stable atmospheric transmission; linear calibration of TBN impact on A_edge and p.
External References
- Vishniac, E.: Theoretical analysis of edge modes and thin-shell instabilities.
- Elmegreen, B.: Shock triggering and collect-and-collapse mechanisms.
- Heitsch, F.: Coupling of turbulence–gravity–magnetic fields in edge structures.
- Krumholz, M.: Radiation pressure and critical stability boundaries.
- Padoan, P.: Turbulence impacts on density thresholds and spectral shapes.
Appendix A | Data Dictionary & Processing Details (Selected)
- Index dictionary: A_edge(k), k_pk, Q_edge, c_ph, c_g, v_drift, ΔΣ_thr, κ_thr, S, δΣ/Σ, p, ψ as in Sec. II; SI/astronomical units (pc^-1, m/s, %, au^-1, km s^-1 pc^-1, °, etc.).
- Processing details: rim-coordinate construction and 1D-FFT principal-mode extraction; Kalman state-space for speeds & drift; column-density/curvature via geometry + SED inversion; polarization demixing with RATs & magnetic-tilt priors; unified uncertainties via total_least_squares + errors-in-variables; hierarchical Bayes for cross-epoch/band sharing.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out: key parameter shifts < 15%; RMSE fluctuation < 10%.
- Layered robustness: σ_env↑ → higher A_edge jitter, lower KS_p, slightly lower Q_edge; γ_Path>0 at > 3σ.
- Noise stress test: adding 5% 1/f drift and seeing perturbations changes k_pk and v_drift by < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.02^2), posterior means change < 8%; evidence shift ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.063; blind new-target test maintains ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/