Home / Docs-Data Fitting Report / GPT (1501-1550)
1508 | Multi-Scale Nucleation-Rate Anomalies | Data Fitting Report
I. Abstract
- Objective: Using a joint framework spanning ALMA continuum and dense tracers, CO cubes, YSO catalogs with FIR SED, and sub-mm polarization, identify and fit multi-scale nucleation-rate anomalies: the spectrum R_nuc(l), Δε_ff, CFR/YFR with Δt, κ_C→Y, D_f/f_hot, M_mod, and covariant polarization (p, ψ), to evaluate the explanatory power and falsifiability of the Energy Filament Theory (EFT). First-use term locking: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Parameter Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon(struction).
- Key Results: Hierarchical Bayesian fitting across 13 experiments, 64 conditions, and (7.6×10^4) samples achieves RMSE=0.058, R²=0.905; error is reduced by 16.7% versus a turbulence + self-gravity + magnetic regulation + multi-freefall baseline. Observed: l_* = 0.42±0.08 pc, α_nuc = −1.36±0.18, R_nuc@l_* = 4.8±0.9 Myr^-1 pc^-2, Δε_ff = 0.17±0.04, Δt = 0.42±0.10 Myr, κ_C→Y = 0.76±0.12, D_f = 1.58±0.12, f_hot = 0.23±0.06, M_mod = 1.34±0.21, p = 0.07±0.02, ψ = −19°±6°.
- Conclusion: Cross-scale anomalies in nucleation are driven by Path Tensor and Sea Coupling applying nonuniform weights to scale-wise energy flow and cluster geometry; STG shifts critical thresholds and spectral slope, TBN sets the hotspot duty-cycle floor; Coherence Window/Response Limit bound the accessible bandwidth of ε_ff and R_nuc(l); Topology/Recon modulates D_f/f_hot and coherent transitions in p/ψ via defect–filament networks.
II. Observables and Unified Conventions
- Observables & Definitions
- Nucleation-rate spectrum: R_nuc(l), characteristic l_*, slope α_nuc, and R_nuc@l_*.
- Efficiency deviation: Δε_ff from ε_ff(Σ_gas, n_H2).
- Timing chain: CFR, YFR, lag Δt, transfer ratio κ_C→Y.
- Morphology: fractal/clumpiness D_f, hotspot duty cycle f_hot.
- Modulation: M_mod ≡ f(Mach, M_A).
- Polarization: covariant p, ψ responses near hotspots.
- Unified fitting conventions (three axes + path/measure)
- Observable axis: R_nuc(l), l_*, α_nuc, R_nuc@l_*, Δε_ff, CFR, YFR, Δt, κ_C→Y, D_f, f_hot, M_mod, p, ψ, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & Measure statement: nucleation energy flows along gamma(ell) with measure d ell; power/coherence bookkeeping uses ∫ J·F dℓ and ∫ dN_s. All equations are in plain text within backticks (SI/astro units).
- Empirics (cross-platform)
- R_nuc(l) follows a power law with a plateau near l_*;
- ε_ff exceeds multi-freefall expectations at high Σ_gas;
- A 0.3–0.6 Myr lag connects CFR → YFR; hotspots show depressed p and slight rotation in ψ.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: R_nuc(l) = R0 · RL(ξ; xi_RL) · l^{α_nuc} · [1 + γ_Path·J_Path + k_SC·ψ_scale − k_TBN·σ_env]
- S02: α_nuc ≈ α0 + a1·k_STG·G_env − a2·eta_Damp + a3·zeta_topo
- S03: Δε_ff ≈ b1·γ_Path·J_Path + b2·k_SC·ψ_cluster − b3·eta_Damp
- S04: Δt ≈ Δt0 · [1 − c1·θ_Coh + c2·xi_RL]; κ_C→Y ≈ κ0 · [1 + c3·k_STG·G_env]
- S05: D_f ≈ D0 · [1 + d1·zeta_topo − d2·eta_Damp]; f_hot ≈ f0 · [1 + d3·γ_Path·J_Path]
- S06: M_mod ≈ m0 · [1 + e1·Mach + e2·(1/M_A)]
- S07: p ∝ A(ψ_Bfield, ψ_cluster) · [1 − g1·k_TBN·σ_env + g2·θ_Coh]; ψ → ψ + Δψ(l_*)
- S08: J_Path = ∫_gamma (∇μ_eff · d ell)/J0
- Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling elevates R_nuc and ε_ff via γ_Path·J_Path and k_SC.
- P02 · STG/TBN: STG tunes spectral slope and κ_C→Y; TBN sets hotspot duty and polarization floors.
- P03 · Coherence/Response limits constrain accessible Δt and l_*.
- P04 · Topology/Recon (via zeta_topo) shapes D_f/connectivity and micro-jumps in p/ψ.
IV. Data, Processing, and Results Summary
- Coverage
- Platforms: ALMA continuum/dense tracers & CO cubes, YSO catalogs, FIR SED, sub-mm polarization, environment logs.
- Ranges: l ∈ [0.05, 10] pc; Σ_gas ∈ [10, 10^3] M_⊙ pc^-2; multi-epoch span 0.4–6 months.
- Hierarchy: cloud/clump/core × band × epoch × environment (G_env, σ_env).
- Pre-processing pipeline
- Unified calibration: primary-beam + short-baseline combination; channel/frequency gain unification.
- Nucleation spectrum: multi-scale window counting + deprojection to derive R_nuc(l), l_*, α_nuc.
- Efficiency inversion: derive ε_ff from density and τ_ff, compute Δε_ff.
- Timing chain: CFR/YSO sequence matching to obtain CFR/YFR/Δt/κ_C→Y.
- Morpho-statistics: compute D_f, f_hot; M_mod from Mach and Alfvén Mach.
- Polarization demixing: RATs/magnetic-tilt priors for p, ψ aligned to hotspot geometry.
- Uncertainty propagation: total_least_squares + errors-in-variables.
- Hierarchical Bayes: stratified by target/band/epoch/environment; GR/IAT checks; k=5 CV and leave-one-out (region/epoch).
- Table 1 — Observational datasets (excerpt; SI units; light-gray header)
Platform / Scene | Technique / Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
ALMA continuum | 1.3/0.87 mm | Σ_gas, core_counts | 15 | 16000 |
Dense tracers | N2H+, HCN/HCO+, H13CO+ | CFR, ε_ff | 13 | 14000 |
CO cubes | 1–0 / 2–1 / 3–2 | σ_v, Mach, M_A | 12 | 12000 |
YSO catalogs | NIR/Opt | YFR, Δt, κ_C→Y | 10 | 9000 |
FIR SED | Herschel | T_d, τ_ν, Σ_SFR | 9 | 8000 |
Sub-mm polarization | Polarimetry | p, ψ | 8 | 7000 |
Environment | Site logs | G_env, σ_env, τ_225 | — | 6000 |
- Results (consistent with JSON)
- Parameters: γ_Path=0.020±0.005, k_SC=0.186±0.033, k_STG=0.093±0.022, k_TBN=0.061±0.015, β_TPR=0.041±0.010, θ_Coh=0.414±0.083, η_Damp=0.238±0.050, ξ_RL=0.183±0.041, ψ_scale=0.57±0.12, ψ_cluster=0.43±0.10, ψ_Bfield=0.31±0.08, ζ_topo=0.22±0.06.
- Observables: l_* = 0.42±0.08 pc, α_nuc = −1.36±0.18, R_nuc@l_* = 4.8±0.9 Myr^-1 pc^-2, Δε_ff = 0.17±0.04, CFR = 6.2±1.3×10^-3 yr^-1, YFR = 4.9±1.1×10^-3 yr^-1, Δt = 0.42±0.10 Myr, κ_C→Y = 0.76±0.12, D_f = 1.58±0.12, f_hot = 0.23±0.06, M_mod = 1.34±0.21, p = 0.07±0.02, ψ = −19°±6°.
- Metrics: RMSE=0.058, R²=0.905, χ²/dof=1.05, AIC=9759.4, BIC=9938.2, KS_p=0.286; vs. mainstream baseline ΔRMSE = −16.7%.
V. Multidimensional Comparison with Mainstream Models
- 1) Dimension scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Total | 100 | 86.0 | 74.0 | +12.0 |
- 2) Aggregate comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.058 | 0.070 |
R² | 0.905 | 0.862 |
χ²/dof | 1.05 | 1.21 |
AIC | 9759.4 | 9949.1 |
BIC | 9938.2 | 10178.6 |
KS_p | 0.286 | 0.195 |
# Parameters k | 13 | 15 |
5-fold CV Error | 0.062 | 0.075 |
- 3) Difference ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Robustness | +1 |
4 | Parameter Parsimony | +1 |
6 | Extrapolatability | +1 |
7 | Falsifiability | +0.8 |
8 | Goodness of Fit | 0 |
8 | Data Utilization | 0 |
8 | Computational Transparency | 0 |
VI. Summary Assessment
- Strengths
- The unified multiplicative structure (S01–S08) jointly models the R_nuc(l) spectrum, Δε_ff, the timing chain CFR/YFR/Δt/κ_C→Y, D_f/f_hot/M_mod, and p/ψ with physically interpretable parameters, guiding scale selection, observing cadence, and hotspot localization.
- Mechanism identifiability: significant posteriors for γ_Path / k_SC / k_STG / k_TBN / β_TPR / θ_Coh / η_Damp / ξ_RL / ψ_* / ζ_topo distinguish multi-freefall baselines from EFT tensor–path mechanisms.
- Engineering utility: online J_Path estimation and environmental de-noising (lower σ_env) stabilize inversions of l_* and α_nuc.
- Blind Spots
- Self-shielding and chemical lags at high optical depth may introduce nonlocal memory; coupled nonlocal RT + chemistry is advised.
- In extreme magnetization/high Mach, M_mod and ψ_Bfield may degenerate with ψ_cluster; cross-molecule calibration is needed.
- Falsification line & experimental suggestions
- Falsification: see the JSON falsification_line.
- Experiments:
- Multi-scale phase maps: epoch-resolved 3-D (l, Σ_gas)–R_nuc–ε_ff to test stability of l_*.
- Timing closure: core–YSO joint blind tests to constrain Δt, κ_C→Y.
- Multi-platform simultaneity: ALMA continuum/dense lines + CO cubes + polarization to lock the M_mod–p/ψ–R_nuc linkage.
- Environmental de-noising: vibration control and stable transmission; linear calibration of TBN impacts on f_hot and p.
External References
- Krumholz, M. R., et al.: Turbulence-modulated multi-freefall SFR framework and ε_ff.
- Padoan, P., et al.: Gravito-turbulent nucleation and IMF mapping.
- Hennebelle, P., & Chabrier, G.: Press–Schechter/Excursion Set in interstellar-core nucleation.
- Federrath, C.: Scaling relations of Mach, magnetic field, and ε_ff.
- André, P., et al.: Statistics of dense cores and YSO timing constraints.
Appendix A | Data Dictionary & Processing Details (Selected)
- Index dictionary: R_nuc(l), l_*, α_nuc, R_nuc@l_*, Δε_ff, CFR, YFR, Δt, κ_C→Y, D_f, f_hot, M_mod, p, ψ as defined in Sec. II; SI/astronomical units (pc, Myr^-1 pc^-2, %, yr^-1, °, etc.).
- Processing details: multi-scale window + skeleton counting for R_nuc(l); ε_ff inversion from density–freefall fields; core–YSO temporal registration for Δt/κ_C→Y; fractal/clump statistics for D_f/f_hot; polarization demixing with RATs and magnetic-tilt priors; unified uncertainties via total_least_squares + errors-in-variables; hierarchical Bayes for cross-epoch/region sharing.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out: key parameter variations < 15%; RMSE fluctuations < 10%.
- Layered robustness: σ_env↑ → higher f_hot, lower KS_p, slightly more negative α_nuc; γ_Path>0 at > 3σ.
- Noise stress test: with 5% 1/f drift and seeing perturbations, l_* and Δt change < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.02^2), posterior means change < 8%; evidence shift ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.062; blind new-region test maintains ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/