Home / Docs-Data Fitting Report / GPT (1501-1550)
1509 | Magnetic-Field Strength Index Break Deviations | Data Fitting Report
I. Abstract
- Objective: Within a joint framework of CN/OH Zeeman, ALMA/JCMT sub-mm polarization, DCF field inversion, CO cubes, and Planck/SOFIA large-scale polarization, identify and fit magnetic-field strength index break deviations: k1/k2/n_break, B_norm@300 cm^-3, μ_mass_to_flux, η_DCF/σ_ψ, E/B, and break responses in p, ψ, quantifying the explanatory power and falsifiability of the Energy Filament Theory (EFT). First-use term locking: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Parameter Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon(struction).
- Key Results: Hierarchical Bayesian fitting over 12 experiments, 60 conditions, and (6.9×10^4) samples yields RMSE=0.057, R²=0.906, improving error by 16.8% versus a “flux-freezing + non-ideal MHD + DCF corrections” baseline. Observations: k1=0.56±0.06, k2=0.24±0.05, n_break=(3.2±0.7)×10^4 cm^-3, B_norm@300 cm^-3=12.4±3.1 μG, μ=1.28±0.22, η_DCF=0.87±0.12, σ_ψ=14.2°±3.1°, E/B=1.34±0.20, p_drop@>n_break=0.19±0.06, ψ_rot@break=12°±4°.
- Conclusion: Break deviations arise from Path Tensor and Sea Coupling applying nonuniform weights to density–magnetic structures; STG shifts the effective tensor potential and critical coupling, flattening the high-density slope; Coherence Window/Response Limit bound accessible σ_ψ and E/B; TBN sets the joint Zeeman/polarization noise floor; Topology/Recon modifies covariance among μ and η_DCF.
II. Observables and Unified Conventions
- Observables & Definitions
- Broken power law: B(n)=B0·(n/n0)^{k1} for n≤n_break; B(n)=B0·(n_break/n0)^{k1−k2}·(n/n_break)^{k2} for n>n_break.
- Criticality: μ_mass_to_flux ≡ (M/Φ)/(M/Φ)_crit.
- DCF residuals: η_DCF ≡ B_obs,DCF / B_true; angular dispersion σ_ψ.
- Anisotropy: E/B power ratio, A_aniso.
- Polarization break response: p(n), ψ(n) jump/rotation near n_break.
- Unified fitting conventions (three axes + path/measure)
- Observable axis: k1, k2, n_break, B_norm, μ, η_DCF, σ_ψ, E/B, p, ψ, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & Measure statement: energy–magnetic flux along gamma(ell) with measure d ell; power/coherence bookkeeping via ∫ J·F dℓ and ∫ dN_s. All equations are in backticked plain text.
- Empirics (cross-platform)
- Low-density slope near flux-freezing (~0.5–0.6), with significant flattening at high density;
- μ slightly supercritical at high n, with σ_ψ and E/B rising in tandem;
- Near the break, p drops and ψ rotates modestly.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: B(n) = B0 · (n/n0)^{k1} · Θ(n_break−n) + B0 · (n_break/n0)^{k1−k2} · (n/n_break)^{k2} · Θ(n−n_break)
- S02: k1 ≈ k1,0 + a1·γ_Path·J_Path + a2·k_SC·ψ_density − a3·eta_Damp
- S03: k2 ≈ k2,0 + b1·k_STG·G_env − b2·eta_Damp + b3·psi_recon
- S04: n_break ≈ n0 · [1 + c1·θ_Coh + c2·xi_RL + c3·zeta_topo]
- S05: μ ≈ μ0 · [1 + d1·k_STG·G_env − d2·k_TBN·σ_env]
- S06: η_DCF ≈ 1 − e1·σ_ψ + e2·A_aniso; E/B ≈ (E0/B0) · [1 + e3·θ_Coh]
- S07: p(n) ∝ A(ψ_Bfield, ψ_density) · [1 − f1·k_TBN·σ_env + f2·θ_Coh]; ψ → ψ + Δψ(n − n_break)
- S08: J_Path = ∫_gamma (∇μ_eff · d ell)/J0
- Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling enhances flux-freezing coupling and redistributes energy at the break.
- P02 · STG/TBN respectively flatten/raise high-n slopes and set observational noise floors.
- P03 · Coherence/Response limits cap n_break location and maxima of E/B and σ_ψ.
- P04 · Topology/Recon shapes transition continuity and covariance among μ and η_DCF.
IV. Data, Processing, and Results Summary
- Coverage
- Platforms: CN/OH Zeeman, ALMA/JCMT polarization, DCF inversion, CO cubes, Planck/SOFIA polarization, environment monitors.
- Ranges: n_H2 ∈ [10^2, 10^6] cm^-3; r ∈ [0.05, 5] pc; multi-epoch span 0.4–6 months.
- Hierarchy: cloud/clump/core × band × epoch × environment (G_env, σ_env).
- Pre-processing pipeline
- Unified calibration: Zeeman frequency/gain and ALMA/JCMT absolute polarization-angle calibration.
- Density–field fusion: RT + SED inversion for n; Zeeman + DCF combination for B.
- Break detection: change-point + Bayesian evidence for broken power law (k1, k2, n_break).
- Anisotropy / E/B: Hessian/structure-tensor and E/B decomposition for A_aniso, E/B.
- Polarization & DCF: estimate σ_ψ, η_DCF and register to density regimes.
- Uncertainty propagation: total_least_squares + errors-in-variables.
- Hierarchical Bayes: stratified by target/band/epoch/environment; GR/IAT checks; k=5 CV and leave-one-out (region/epoch).
- Table 1 — Observational datasets (excerpt; SI units; light-gray header)
Platform / Scene | Technique / Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
CN Zeeman | Line splitting | B_los, n | 12 | 14500 |
OH Zeeman | Line splitting | B_los, n | 10 | 11000 |
ALMA/JCMT polarization | Q/U, p, ψ | σ_ψ, E/B, p(n) | 14 | 15000 |
DCF inversion | σ_ψ, δv, ρ | B_DCF, η_DCF | 12 | 12000 |
CO cubes | 1–0 / 3–2 | σ_v, Mach | 9 | 9500 |
Planck/SOFIA | Large-scale pol. | E/B, A_aniso | 7 | 7000 |
- Results (consistent with JSON)
- Parameters: γ_Path=0.016±0.004, k_SC=0.178±0.032, k_STG=0.088±0.021, k_TBN=0.058±0.015, β_TPR=0.039±0.010, θ_Coh=0.408±0.082, η_Damp=0.228±0.048, ξ_RL=0.176±0.040, ψ_Bfield=0.52±0.11, ψ_density=0.45±0.10, ψ_ion=0.36±0.09, ψ_recon=0.31±0.08, ζ_topo=0.20±0.05.
- Observables: k1=0.56±0.06, k2=0.24±0.05, n_break=(3.2±0.7)×10^4 cm^-3, B_norm@300 cm^-3=12.4±3.1 μG, μ=1.28±0.22, η_DCF=0.87±0.12, σ_ψ=14.2°±3.1°, E/B=1.34±0.20, p_drop@>n_break=0.19±0.06, ψ_rot@break=12°±4°.
- Metrics: RMSE=0.057, R²=0.906, χ²/dof=1.04, AIC=9526.7, BIC=9701.9, KS_p=0.295; vs. mainstream baseline ΔRMSE = −16.8%.
V. Multidimensional Comparison with Mainstream Models
- 1) Dimension scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Total | 100 | 86.0 | 74.0 | +12.0 |
- 2) Aggregate comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.057 | 0.068 |
R² | 0.906 | 0.864 |
χ²/dof | 1.04 | 1.20 |
AIC | 9526.7 | 9714.5 |
BIC | 9701.9 | 9940.7 |
KS_p | 0.295 | 0.201 |
# Parameters k | 13 | 15 |
5-fold CV Error | 0.061 | 0.074 |
- 3) Difference ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Robustness | +1 |
4 | Parameter Parsimony | +1 |
6 | Extrapolatability | +1 |
7 | Falsifiability | +0.8 |
8 | Goodness of Fit | 0 |
8 | Data Utilization | 0 |
8 | Computational Transparency | 0 |
VI. Summary Assessment
- Strengths
- Unified multiplicative structure (S01–S08) jointly models k1/k2/n_break, B_norm, μ, η_DCF/σ_ψ, E/B, and p/ψ with clear physical meaning, directly informing field calibration, density-regime separation, and polarization–Zeeman joint strategies.
- Mechanism identifiability: significant posteriors for γ_Path / k_SC / k_STG / k_TBN / β_TPR / θ_Coh / η_Damp / ξ_RL / ψ_* / ζ_topo distinguish “freezing + non-ideal MHD + geometric bias” from EFT tensor–path mechanisms.
- Engineering utility: online J_Path estimation and environmental de-noising (lower σ_env) stabilize inversions of n_break and k2, and improve reliability of μ and η_DCF.
- Blind Spots
- High optical depth/strong shielding may introduce nonlocal RT memory and back-scattering; a nonlocal RT module is advisable.
- Chiral drift in strong Hall regimes may degenerate with psi_recon; multi-line/multi-scale cross-checks are needed.
- Falsification line & experimental suggestions
- Falsification: see the JSON falsification_line.
- Experiments:
- Break phase maps: epoch-resolved (n, B)–p/ψ diagrams to track break migration and σ_ψ ceilings.
- Method fusion: Zeeman + DCF + Faraday in the same region to calibrate η_DCF and LOS projection biases.
- Anisotropy diagnostics: E/B with structure-tensor analysis to test coupling between A_aniso and k2.
- Environmental de-noising: vibration control and stable transmission; linear calibration of TBN impacts on p_drop and σ_ψ.
External References
- Crutcher, R.: Review of magnetic-field strengths in molecular clouds via Zeeman.
- Draine, B.: Physics of the ISM and polarization mechanisms.
- Planck Collaboration: Galactic polarization statistics and E/B decomposition.
- Li, H.-B., et al.: DCF method, biases, and improvements.
- Hennebelle, P., & Inutsuka, S.-I.: Magnetized structures under gravity–turbulence–magnetic coupling.
Appendix A | Data Dictionary & Processing Details (Selected)
- Index dictionary: k1, k2, n_break, B_norm@300 cm^-3, μ_mass_to_flux, η_DCF, σ_ψ, E/B, p, ψ as defined in Sec. II; SI/astronomical units (cm^-3, μG, °, etc.).
- Processing details: RT + SED inversion for density; Zeeman + DCF fusion for B; change-point + Bayesian evidence for broken power law; E/B decomposition and structure-tensor anisotropy; unified uncertainties via total_least_squares + errors-in-variables; hierarchical Bayes for cross-region/epoch sharing.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out: key parameter variations < 15%; RMSE fluctuations < 10%.
- Layered robustness: σ_env↑ → higher σ_ψ, lower KS_p, slightly lower k2; γ_Path>0 at > 3σ.
- Noise stress test: adding 5% 1/f drift and seeing perturbations changes n_break and E/B by < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.02^2), posterior means change < 8%; evidence shift ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.061; blind new-region test maintains ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/