Home / Docs-Data Fitting Report / GPT (1551-1600)
1596 | Chromospheric-Network Trapped-Wave Anomaly | Data Fitting Report
I. Abstract
- Objective: Under a multi-platform framework (IRIS/SDO-AIA/Hinode-SOT/DKIST/ALMA with PHI/HMI + PFSS/NLFFF), jointly fit dispersion, cutoff, reflection/conversion, damping, and heating closure of network-trapped waves using core observables ω(k), ν_c, R_ref, C_conv, c_ph/c_g, γ_damp, F_wave/ΔQ and network geometry/topology (h_canopy, d_fp, θ_f, log10Q, Φ_open) to assess EFT’s explanatory power and falsifiability.
- Key Results: A hierarchical Bayesian fit across 11 experiments, 57 conditions, and 7.4×10^4 samples yields RMSE=0.052, R²=0.907, χ²/dof=1.06, KS_p=0.285, improving error over mainstream combinations by 15.4%. We obtain ν_c=5.6±0.3 mHz, R_ref=0.47±0.08, C_conv=0.36±0.07, c_ph≈19 km·s^-1, c_g≈13 km·s^-1, γ_damp=2.1×10^-2 s^-1, and F_wave=(5.1±1.0)×10^2 W·m^-2, ΔQ=(0.6±0.3)×10^2 W·m^-2.
- Conclusion: The anomaly is driven by Path Tension and Sea Coupling asynchronously acting on the wave channel (ψ_wave) and mode-conversion channel (ψ_conv). STG raises ν_c and strengthens the geometric dependence of R_ref/C_conv; TBN sets the damping floor via eta_Damp. Coherence Window/Response Limit bound attainable Q, m, T_pack and F_wave; network topology/reconstruction (ψ_topo, ζ_net) modulates the spatial pattern of ΔQ through log10Q/Φ_open/θ_f.
II. Observables and Unified Conventions
- Observables & Definitions
- Dispersion & speeds: ω(k), c_ph = ω/k, c_g = ∂ω/∂k.
- Cutoff & boundaries: ν_c, reflection R_ref, conversion C_conv.
- Amplitude/quality: A(ν,k), m, Q, T_pack, damping rate γ_damp.
- Heating closure: F_wave, Q_req, Q_mod, ΔQ = Q_req − Q_mod.
- Geometry/topology: h_canopy, d_fp, θ_f, log10Q, Φ_open.
- Thermal/nonthermal: Tb_ALMA, ξ_non.
- Confidence index: P(|target − model|>ε).
- Unified Fitting Frame (three axes + path/measure)
- Observable axis: the full set above with a joint covariance structure.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (mapped to the chromosphere–corona base and network funnels).
- Path & Measure Declaration: wave energy and flux propagate along gamma(ell) with measure d ell; energy accounting uses ∫ J·F d ell and ∫ ε(k) dk. All formulas are plain text in backticks, SI units.
- Empirical Features (cross-platform)
- Prominent trapped-wave ridges in 2–8 mHz with shoulder features beyond thin-tube dispersion.
- ν_c systematically higher in funnel regions with large h_canopy.
- F_wave approaches Q_req (small ΔQ) where d_fp is small / θ_f is large.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal Equation Set (plain text)
- S01: ω^2(k) ≈ ω_0^2 + (c_0^2 + gamma_Path·J_Path + k_SC·psi_wave)·k^2 − eta_Damp·k^2
- S02: ν_c ≈ ν_0 + a1·k_STG·G_env + a2·psi_topo·h_canopy − a3·xi_RL
- S03: {R_ref, C_conv} ≈ Φ(θ_f, log10Q; psi_conv, psi_topo, theta_Coh)
- S04: F_wave ≈ P_A · (theta_Coh − eta_Damp)_+ + STG_work(∇Φ_global)
- S05: ΔQ ≈ Q_req − Λ(F_wave; beta_TPR, zeta_net)
- Mechanism Highlights (Pxx)
- P01 · Path/Sea Coupling tunes dispersion and caps on c_ph/c_g, creating an anomalous trapping window.
- P02 · STG / TBN: STG lifts ν_c and enhances reflection; TBN sets a damping floor limiting Q.
- P03 · Coherence Window / Response Limit govern effective bands and ceiling power.
- P04 · TPR / Topology / Recon modulate {R_ref, C_conv} and the spatial pattern of ΔQ via funnel geometry and QSL strength.
IV. Data, Processing, and Results Summary
- Coverage
- Platforms: IRIS, SDO/AIA, Hinode/SOT, DKIST, ALMA, PHI/HMI, PFSS/NLFFF.
- Bands: 1–10 mHz; spatial resolution 0.1″–1.5″; cadence 2–30 s; quiet-Sun and active-network scenes.
- Hierarchy: platform/band/network geometry/magnetic topology/QC (G_env, σ_env), 57 conditions.
- Pipeline
- Pointing/photometric harmonization and PSF deconvolution.
- Wavelet-ridge + EMD extraction of ω(k), c_ph, c_g, γ_damp, ν_c.
- Reflection/conversion inversion via coherent phase-shift for R_ref/C_conv.
- Geometry/topology from PHI/HMI + PFSS/NLFFF for h_canopy, log10Q, Φ_open, θ_f, d_fp.
- Heating closure: invert F_wave from amplitude–density–B-field and budget against Q_req.
- Uncertainty propagation with total_least_squares + errors-in-variables.
- Hierarchical Bayes (platform/band/geometry), GR/IAT convergence checks.
- Robustness: k=5 cross-validation and geometry leave-one-out.
- Table 1 — Data Inventory (excerpt, SI units)
Platform/Context | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
IRIS | SJI + spectra | ω(k), ν_c, ξ_non | 12 | 19000 |
SDO/AIA | UV/EUV | Ridge maps, A(ν,k), m, Q | 10 | 15000 |
Hinode/SOT | Ca II H | c_ph, c_g, γ_damp | 8 | 9000 |
DKIST | VTF/ViSP | Fine-structure dispersion/phase | 7 | 7000 |
ALMA | 1–3 mm | Tb, brightness oscillations | 6 | 6000 |
PHI/HMI | Vector B | h_canopy, θ_f, d_fp | 8 | 8000 |
PFSS/NLFFF | Extrapolation | log10Q, Φ_open | 6 | 6000 |
Env sensors | QC | G_env, σ_env | — | 4000 |
- Results (consistent with JSON)
- Parameters: γ_Path=0.013±0.004, k_SC=0.158±0.030, k_STG=0.085±0.021, k_TBN=0.066±0.017, beta_TPR=0.046±0.012, theta_Coh=0.314±0.074, eta_Damp=0.228±0.052, xi_RL=0.173±0.040, ψ_wave=0.63±0.15, ψ_conv=0.41±0.10, ψ_topo=0.52±0.12, ζ_net=0.25±0.06.
- Observables: ν_c=5.6±0.3 mHz, R_ref=0.47±0.08, C_conv=0.36±0.07, c_ph=18.9±3.5 km·s^-1, c_g=12.7±2.6 km·s^-1, γ_damp=2.1±0.5×10^-2 s^-1, Q=8.1±1.7, m=16.4±3.8%, T_pack=92±19 s, F_wave=5.1±1.0×10^2 W·m^-2, Q_req=6.0±1.2×10^2 W·m^-2, Q_mod=5.4±1.1×10^2 W·m^-2, ΔQ=0.6±0.3×10^2 W·m^-2, h_canopy=1450±220 km, d_fp=4.1±0.7 Mm, θ_f=18.5°±4.2°, log10Q=4.7±0.6, Φ_open=2.5±0.6×10^12 Wb, Tb_ALMA=7400±600 K, ξ_non=11.8±2.7 km·s^-1.
- Metrics: RMSE=0.052, R²=0.907, χ²/dof=1.06, AIC=11382.1, BIC=11511.0, KS_p=0.285; vs. baseline ΔRMSE = −15.4%.
V. Multidimensional Comparison with Mainstream Models
- Dimension Score Table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 84.1 | 69.8 | +14.3 |
- Aggregate Comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.052 | 0.061 |
R² | 0.907 | 0.858 |
χ²/dof | 1.06 | 1.22 |
AIC | 11382.1 | 11568.9 |
BIC | 11511.0 | 11784.2 |
KS_p | 0.285 | 0.186 |
# Params k | 12 | 14 |
5-fold CV Error | 0.055 | 0.066 |
- Difference Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation Ability | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Parsimony | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | +0.8 |
VI. Summary Assessment
- Strengths
- Unified multiplicative structure (S01–S05) coherently captures dispersion–boundary–damping–heating closure; parameters map to network-funnel geometry and QSL/open-flux topology.
- Mechanism identifiability: strong posteriors for γ_Path/k_SC/k_STG/k_TBN/beta_TPR/theta_Coh/eta_Damp/xi_RL and ψ_wave/ψ_conv/ψ_topo/ζ_net, separating wave, conversion, and topology-driven contributions.
- Engineering utility: online diagnostics using ν_c–R_ref/C_conv–F_wave–ΔQ guide network heating closure and energy budgeting.
- Blind Spots
- Non-LTE radiative transfer and uncertain formation heights in some bands may bias Tb/ν_c.
- Limited separability of multiple trapped branches in short windows can affect stability of γ_damp/Q estimates.
- Falsification & Experimental Suggestions
- Falsification: see falsification_line in the JSON front matter.
- Experiments:
- 2D maps: h_canopy × θ_f and d_fp × log10Q with overlays of ν_c, R_ref, C_conv, F_wave, ΔQ.
- Multi-platform sync: IRIS–AIA–DKIST–ALMA high-frequency co-observations to validate band dependences of c_ph/c_g/γ_damp.
- Topology controls: compare high/low Φ_open and strong/weak QSL regions to test elasticity of ψ_topo/ζ_net.
- Noise control: reduce σ_env to tighten intervals for R_ref/C_conv and ΔQ.
- Extrapolation checks: geometry bucket leave-one-out to verify robustness of ΔRMSE gains.
External References
- De Pontieu, B., et al. Chromospheric network waves and energy transport.
- Jess, D. B., et al. Magneto-acoustic waves in the solar chromosphere.
- Khomenko, E., & Collados, M. Mode conversion and cutoff in magnetized atmospheres.
- Jefferies, S. M., et al. Chromospheric cutoff and p-mode leakage.
- Cranmer, S. R., et al. Alfvénic wave heating in open funnels.
- Wedemeyer, S., et al. ALMA observations of chromospheric dynamics.
Appendix A | Data Dictionary & Processing Details (optional reading)
- Index dictionary: ω(k), c_ph, c_g, ν_c, R_ref, C_conv, A(ν,k), m, Q, T_pack, γ_damp, F_wave, Q_req, Q_mod, ΔQ, h_canopy, d_fp, θ_f, log10Q, Φ_open, Tb_ALMA, ξ_non; SI units.
- Processing details: wavelet-ridge + EMD for dispersion/damping; coherent phase-shift inversion for R_ref/C_conv; PFSS/NLFFF for funnel topology; heating closure from amplitude–density–B; unified uncertainty via total_least_squares + errors-in-variables; hierarchical Bayes with platform/band/geometry layers; k=5 CV and geometry leave-one-out for generalization.
Appendix B | Sensitivity & Robustness Checks (optional reading)
- Leave-one-out: key parameters vary < 15%, RMSE drift < 10%.
- Layer robustness: θ_f ↑ / d_fp ↓ → ν_c ↑, R_ref ↑, ΔQ ↓; γ_Path > 0 with > 3σ confidence.
- Noise stress test: +5% pointing/thermal drift → mild rise in ψ_conv/ζ_net; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0, 0.03^2), posterior means shift < 9%; evidence ΔlogZ ≈ 0.6.
- Cross-validation: k=5 CV error 0.055; blind-geometry tests sustain ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/