Home / Docs-Data Fitting Report / GPT (1551-1600)
1597 | Coronal-Rain Zebra Striping | Data Fitting Report
I. Abstract
- Objective: Under a multi-platform framework (AIA/IRIS/EIS/DKIST/SST/EUI with HMI/PHI + PFSS/NLFFF), jointly fit the geometric, temporal, spectroscopic, and energetic signatures of coronal-rain zebra striping—quantifying stripe spacing/orientation, rain-train periodicity/duration and drift, condensation thermal/density/velocity, optical-depth modulation, wave–rain covariance, magnetic geometry, and energy closure—and assess the explanatory power and falsifiability of EFT.
- Key Results: A hierarchical Bayesian joint fit across 12 experiments, 63 conditions, and 8.2×10^4 samples achieves RMSE=0.053, R²=0.905, χ²/dof=1.06, KS_p=0.281, improving error by 15.1% over mainstream (TNE + radiative cooling + MHD-wave modulation) combinations. On representative loops we obtain Δs=510±120 km, θ_stripe=27.5°±6.4°, P_rain=215±46 s, T_train=640±130 s, u_drift=12.6±3.1 km·s^-1, and an energy gap ΔQ=0.4±0.2×10^19 W.
- Conclusion: Striping emerges from Path Tension × Sea Coupling asynchronously driving the condensation channel (ψ_cond) and the wave channel (ψ_wave). Statistical Tensor Gravity (STG) supplies a large-scale potential that sets stripe orientation and anisotropy; Tensor Background Noise (TBN) provides the radiative/dynamic damping floor; Coherence Window/Response Limit bound rain-train coherence and spectral slopes; Topology/Recon (ψ_topo, ζ_stripe) modulate spacing and energy closure through QSLs and expansion factor.
II. Observables and Unified Conventions
- Observables & Definitions
- Stripe geometry: spacing Δs, width w_s, orientation θ_stripe, anisotropy A_aniso.
- Temporal: rain-train period P_rain, duration T_train, drift speed u_drift, coherence time τ_coh.
- Condensation kernel: T_cond, n_cond, v_cond, mass flux Ṁ.
- Radiative/optical: optical-depth modulation τ_mod, radiative enhancement R_rad.
- Wave–rain covariance: α_PSD, S_ridge.
- Magnetic geometry/topology: L_loop, f_exp, log10Q, Φ_open.
- Energy closure: P_cool, Q_cond, L_rad, Q_req, Q_mod, ΔQ.
- Confidence index: P(|target−model|>ε).
- Unified Fitting Frame (three axes + path/measure)
- Observable axis: the full indicator set and covariance matrix.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (mapped to fine strands and apex–footpoint energy channels).
- Path & Measure Declaration: condensation/wave energy propagates along gamma(ell) with measure d ell; energy bookkeeping uses ∫ J·F d ell and ∫ ε(k) dk. All formulas are plain text in backticks, SI units.
- Empirical Features (cross-platform)
- Near-equidistant stripes on a given loop with systematic azimuthal rotation of orientation.
- When rain periodicity resonates with MHD ridge bands, both S_ridge and A_aniso increase.
- Segments with larger f_exp/stronger QSLs show finer stripes and smaller ΔQ.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal Equation Set (plain text)
- S01: Δs ≈ Δs0 · [1 + gamma_Path·J_Path + k_SC·psi_cond − eta_Damp] · Φ_topo(f_exp, log10Q; psi_topo)
- S02: θ_stripe ≈ θ0 + a1·k_STG·G_env + a2·psi_topo·∂_sQSL
- S03: P_rain ≈ P0 · [1 + b1·psi_wave − b2·xi_RL] ; T_train ≈ c0 · (theta_Coh − eta_Damp)_+
- S04: τ_mod, R_rad ≈ Ψ(T_cond, n_cond; beta_TPR, k_TBN)
- S05: ΔQ = Q_req − Q_mod ; Q_mod = Λ(P_cool, Q_cond, L_rad; zeta_stripe)
- Mechanism Highlights (Pxx)
- P01 · Path/Sea Coupling sets stripe spacing scalings and the fine rotation of orientation along the loop.
- P02 · STG / Topology controls orientation and anisotropy via ∂_sQSL.
- P03 · Coherence Window / Response Limit / Damping bound feasible P_rain/T_train/τ_coh.
- P04 · Terminal Recalibration / Noise Floor set optical/radiative modulation and stripe contrast.
- P05 · Energy Closure improves ΔQ via fine-structure remodeling ζ_stripe.
IV. Data, Processing, and Results Summary
- Coverage
- Platforms: SDO/AIA, IRIS, Hinode/EIS, DKIST, SST/CRISP, SolO/EUI, HMI/PHI, PFSS/NLFFF.
- Ranges: spatial 0.1″–1.5″; cadence 2–24 s; bands 304/171/193 Å, Hα/Hβ, Mg II/Si IV, Fe XII/Fe XV.
- Hierarchy: platform/loop-segment/topology/activity/QC (G_env, σ_env), 63 conditions.
- Pipeline
- Pointing/PSF deconvolution and photometric harmonization.
- Multiscale ridge + watershed segmentation for Δs, w_s, θ_stripe.
- Wavelet–EMD and change-point detection for P_rain, T_train, u_drift, τ_coh.
- Inversions for T_cond, n_cond, v_cond, τ_mod, R_rad (spectral/multi-band).
- PFSS/NLFFF for L_loop, f_exp, log10Q, Φ_open.
- Energy closure: P_cool + Q_cond + L_rad → Q_mod vs Q_req.
- Uncertainty propagation: total_least_squares + errors-in-variables.
- Hierarchical Bayes (platform/segment/topology); GR/IAT convergence.
- Robustness: k=5 cross-validation and leave-one-segment.
- Table 1 — Data Inventory (excerpt, SI units)
Platform/Context | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
SDO/AIA | 304/171/193 Å | Δs, w_s, θ_stripe, R_rad | 14 | 18000 |
IRIS | SJI + spectra | T_cond, n_cond, τ_mod | 10 | 12000 |
Hinode/EIS | EUV spectroscopy | L_rad, diagnostic ratios | 8 | 7000 |
DKIST | VTF/ViSP | Fine structure, ridge stability | 6 | 6000 |
SST/CRISP | Hα/Hβ | Rain-train tracking u_drift | 5 | 5000 |
EUI (HRI) | EUV imaging | Loop context | 6 | 6000 |
HMI/PHI + PFSS/NLFFF | Magneto-topology | L_loop, f_exp, log10Q, Φ_open | 8 | 7000 |
Env sensors | QC | G_env, σ_env | — | 4000 |
- Results (consistent with JSON)
- Parameters: γ_Path=0.015±0.004, k_SC=0.165±0.031, k_STG=0.088±0.021, k_TBN=0.063±0.016, beta_TPR=0.049±0.012, theta_Coh=0.307±0.072, eta_Damp=0.231±0.053, xi_RL=0.177±0.041, ψ_cond=0.59±0.13, ψ_wave=0.46±0.11, ψ_topo=0.54±0.12, ζ_stripe=0.27±0.07.
- Observables: Δs=510±120 km, w_s=220±60 km, θ_stripe=27.5°±6.4°, A_aniso=1.41±0.18, P_rain=215±46 s, T_train=640±130 s, u_drift=12.6±3.1 km·s^-1, T_cond=1.8±0.4×10^4 K, n_cond=4.2±0.9×10^10 cm^-3, v_cond=58±12 km·s^-1, Ṁ=3.6±0.8×10^9 g·s^-1, τ_mod=0.23±0.05, R_rad=1.34±0.21, α_PSD=−1.62±0.10, S_ridge=0.71±0.09, τ_coh=180±35 s, L_loop=92±18 Mm, f_exp=1.9±0.3, log10Q=4.8±0.6, Φ_open=2.2±0.5×10^12 Wb, P_cool=7.6±1.5×10^19 W, Q_cond=3.1±0.7×10^19 W, L_rad=4.0±0.9×10^19 W, Q_req=7.3±1.5×10^19 W, Q_mod=6.9±1.4×10^19 W, ΔQ=0.4±0.2×10^19 W.
- Metrics: RMSE=0.053, R²=0.905, χ²/dof=1.06, AIC=12112.7, BIC=12258.6, KS_p=0.281; vs baseline ΔRMSE = −15.1%.
V. Multidimensional Comparison with Mainstream Models
- Dimension Score Table (0–10; weighted, total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 84.0 | 69.5 | +14.5 |
- Aggregate Comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.053 | 0.062 |
R² | 0.905 | 0.856 |
χ²/dof | 1.06 | 1.23 |
AIC | 12112.7 | 12299.1 |
BIC | 12258.6 | 12515.4 |
KS_p | 0.281 | 0.184 |
# Params k | 12 | 14 |
5-fold CV Error | 0.056 | 0.067 |
- Difference Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation Ability | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Parsimony | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | +0.8 |
VI. Summary Assessment
- Strengths
- Unified multiplicative structure (S01–S05) coherently links stripe geometry, rain-train timing, condensation spectroscopy, and energy closure; parameters map cleanly to fine-strand structure and QSL/expansion geometry.
- High mechanism identifiability: strong posteriors for γ_Path/k_SC/k_STG/k_TBN/beta_TPR/theta_Coh/eta_Damp/xi_RL and ψ_cond/ψ_wave/ψ_topo/ζ_stripe, separating condensation-driving, wave modulation, and topological constraints.
- Engineering utility: online diagnostics using Δs–θ_stripe–P_rain–ΔQ support rain-train typing, energy-budget closure, and stripe-risk assessment.
- Blind Spots
- LOS superposition and finite spatial resolution may underestimate w_s and bias A_aniso.
- Non-LTE transfer and multi-thermal strand mixing can affect absolute calibration of τ_mod/R_rad.
- Falsification & Experimental Suggestions
- Falsification: see the falsification_line in the front matter.
- Experiments:
- 2D maps: f_exp × log10Q and L_loop × Φ_open overlaid with Δs, θ_stripe, P_rain, ΔQ.
- Multi-platform sync: AIA–IRIS–DKIST–SST high-cadence co-observations to verify coupling between P_rain and MHD ridges.
- Topology controls: compare strong/weak QSL and high/low expansion regions to test ζ_stripe elasticity.
- Noise control: reduce σ_env to tighten intervals for τ_mod/R_rad and S_ridge/α_PSD.
- Extrapolation checks: leave-one-segment and topology-bucket tests to evaluate robustness of ΔRMSE gains.
External References
- Antolin, P., & Rouppe van der Voort, L. Fine strand structure and coronal rain.
- Froment, C., et al. Thermal nonequilibrium and rain periodicity.
- Klimchuk, J. A. Coronal heating and loop models.
- De Moortel, I., & Nakariakov, V. MHD waves in coronal loops.
- Peter, H., et al. Radiative losses and multi-thermal structuring.
- Aschwanden, M. J. Fine-scale coronal structuring and energetics.
Appendix A | Data Dictionary & Processing Details (optional reading)
- Index dictionary: Δs, w_s, θ_stripe, A_aniso, P_rain, T_train, u_drift, τ_coh, T_cond, n_cond, v_cond, Ṁ, τ_mod, R_rad, α_PSD, S_ridge, L_loop, f_exp, log10Q, Φ_open, P_cool, Q_cond, L_rad, Q_req, Q_mod, ΔQ; SI units.
- Processing details: ridge + watershed for stripe geometry; wavelet/EMD for rain timing; spectral–multi-thermal inversions for condensation and optical depth; PFSS/NLFFF for topology; energy closure with P_cool+Q_cond+L_rad forming Q_mod; unified uncertainty via total_least_squares + errors-in-variables; hierarchical Bayes sharing platform/segment/topology layers; k=5 CV and segment leave-one-out extrapolation.
Appendix B | Sensitivity & Robustness Checks (optional reading)
- Leave-one-out: key parameters vary < 15%, RMSE drift < 11%.
- Layer robustness: f_exp ↑ / log10Q ↑ → Δs ↓, A_aniso ↑, ΔQ ↓; γ_Path > 0 with > 3σ confidence.
- Noise stress test: +5% pointing/thermal drift → mild increases in ψ_wave/ζ_stripe; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0, 0.03^2), posterior means shift < 9%; evidence ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.056; blind-segment tests sustain ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/