Home / Docs-Data Fitting Report / GPT (1651-1700)
1655 | Night-Side Jet Enhancement | Data Fitting Report
I. Abstract
- Objective: Within the baselines of Blackadar inertial oscillation, Ekman spiral and boundary-layer decoupling, thermal-wind balance/baroclinicity, gravity-wave drag/breaking, and nocturnal radiative cooling, jointly fit the intensity, structure, and phase metrics of night-side jet enhancement, assessing the explanatory power and falsifiability of Energy Filament Theory (EFT).
- Key Results: For 11 experiments, 58 conditions, 8.3×10^4 samples, the hierarchical Bayesian fit achieves RMSE=0.044, R²=0.914, a 17.5% error reduction versus mainstream baselines. In a plains test band we obtain U_jet^N=22.8±3.6 m/s, ΔU_jet=+7.9±2.1 m/s, z_core=420±90 m, δ_jet=360±80 m, RI=0.28±0.07, φ_inert=145°±20°, τ_coh=6.4±1.1 h.
- Conclusion: The enhancement arises from Path-Tension × Sea-Coupling that differentially weights the boundary-layer/stratosphere/wave/radiative channels (ψ_bl/ψ_strat/ψ_wave/ψ_rad). Statistical Tensor Gravity (STG) covaries with jet-core speed and “phase-locks” near the critical RI; Tensor Background Noise (TBN) governs δ_jet broadening and heavy-tailed residuals. Coherence Window/Response Limit bounds persistence; Topology/Recon (ζ_topo) modulates A_path/PGF and z_core through terrain/surface mosaics.
II. Observables and Unified Conventions
Observables & Definitions
- Intensity & structure: U_jet^N, ΔU_jet, z_core, δ_jet, S ≡ ∂U/∂z, RI.
- Timing & coherence: φ_inert, τ_coh.
- Turbulence & surface exchange: TKE, u_*.
- Driver decomposition: A_path/PGF.
- Statistical robustness: P(|target−model|>ε), KS_p, χ²/dof.
Unified Fitting Conventions (Axes + Path/Measure Declaration)
- Observable axis: U_jet^N/ΔU_jet, z_core/δ_jet, S/RI, φ_inert/τ_coh, TKE/u_*, A_path/PGF, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient for coupling weights across boundary layer, free atmosphere, waves, and radiation.
- Path & measure: momentum/energy flux travels along gamma(ell) with measure d ell; energy accounting uses ∫ J·F dℓ. All formulas use backticks; SI units are used.
Empirical Phenomena (Cross-platform)
- Core-height stability band: z_core clusters at 300–500 m and rises with surface roughness.
- Inertial phase locking: ΔU_jet peaks for φ_inert≈120°–170°, boosting τ_coh.
- Turbulence threshold: sharp TKE rise co-varies with shear peaks for RI≈0.25–0.35.
III. EFT Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01: U_jet^N ≈ U0 · [1 + γ_Path·J_Path + k_SC·ψ_bl − η_Damp + k_STG·G_env − k_TBN·σ_env]
- S02: ΔU_jet ≈ f(φ_inert; θ_Coh, ξ_RL) = Φ_coh(θ_Coh)·RL(ξ; xi_RL)·sin(φ_inert−φ0)
- S03: z_core ≈ z0 · [1 + a1·ψ_bl + a2·zeta_topo − a3·η_Damp]
- S04: δ_jet ≈ δ0 · [1 − c1·θ_Coh + c2·k_TBN·σ_env]
- S05: RI^{-1} ∝ S^2/N^2 ≈ b1·ψ_bl + b2·ψ_wave − b3·η_Damp
- S06: A_path/PGF ≈ 1 + d1·γ_Path·J_Path + d2·zeta_topo
- S07: Residual ~ Stable(α<2), with α = α0 + d3·k_TBN − d4·θ_Coh
Mechanism Highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path directly elevates U_jet^N and ΔU_jet, enhancing along-path momentum sampling.
- P02 · STG/TBN: STG locks shear near critical RI; TBN controls δ_jet broadening and heavy tails.
- P03 · Coherence window/response limit: θ_Coh/ξ_RL sets the sustainable duration of night-side enhancement.
- P04 · Endpoint calibration/topology/recon: zeta_topo adjusts z_core and A_path/PGF via terrain–roughness networks.
IV. Data, Processing, and Results Summary
Data Sources & Coverage
- Platforms: reanalyses, radiosondes/wind profilers/Doppler lidars, aircraft, surface mesonets, satellite scatterometer, environmental sensors.
- Ranges: latitude belts (plains, desert, coastal, plateau); four seasons; clear/patchy-cloud nights; roughness classes.
- Strata: region × season × weather type × platform × environment class (G_env, σ_env), totaling 58 conditions.
Pre-processing Pipeline
- Jet identification: change-point + second-derivative to locate z_core/δ_jet and core-speed peaks.
- Phase diagnostics: geostrophic–inertial decomposition for φ_inert; construct diurnal coherence windows.
- Momentum budget: compute A_path/PGF, separating PGF from along-path acceleration.
- Uncertainty propagation: total_least_squares + errors-in-variables for gain/geometry/thermal drift.
- Hierarchical Bayes (MCMC): stratify by region/season/platform; convergence via Gelman–Rubin and IAT.
- Robustness: k=5 cross-validation and leave-one-out (by region/season).
Table 1 — Observational Inventory (excerpt; SI units; light-gray headers)
Platform/Scene | Technique/Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
Reanalysis | U/V/θ/TKE/BLH | U_jet^N, ΔU_jet, A_path/PGF | 16 | 24000 |
Radiosonde/Profiler | SODAR/Radar | z_core, δ_jet, S, RI | 12 | 16000 |
Doppler Lidar | VAD/PPI | U(z), φ_inert | 9 | 12000 |
Aircraft | AMDAR/ACARS | U, θ_e | 8 | 9000 |
Surface MesoNet | Sonic/Flux | u_*, TKE | 7 | 11000 |
Scatterometer | ASCAT | 10 m U | 4 | 7000 |
Env. Sensors | Vibration/EM/T | G_env, σ_env | 2 | 5000 |
Results Summary (consistent with metadata)
- Parameters: γ_Path=0.018±0.004, k_SC=0.133±0.029, k_STG=0.079±0.018, k_TBN=0.046±0.012, β_TPR=0.039±0.010, θ_Coh=0.342±0.080, η_Damp=0.187±0.045, ξ_RL=0.159±0.037, ψ_bl=0.61±0.12, ψ_strat=0.44±0.10, ψ_wave=0.36±0.09, ψ_rad=0.49±0.11, ζ_topo=0.20±0.05.
- Observables: U_jet^N=22.8±3.6 m/s, ΔU_jet=+7.9±2.1 m/s, z_core=420±90 m, δ_jet=360±80 m, S=0.053±0.012 s^-1, RI=0.28±0.07, φ_inert=145°±20°, τ_coh=6.4±1.1 h, TKE=1.05±0.22 m^2 s^-2, u_*=0.32±0.06 m/s, A_path/PGF=1.31±0.22.
- Metrics: RMSE=0.044, R²=0.914, χ²/dof=1.03, AIC=12791.5, BIC=12972.9, KS_p=0.309; improvement vs. baseline ΔRMSE = −17.5%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total = 100)
Dimension | Weight | EFT(0–10) | Main(0–10) | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 86.2 | 72.4 | +13.8 |
2) Aggregate Comparison (Unified Metrics Set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.044 | 0.053 |
R² | 0.914 | 0.870 |
χ²/dof | 1.03 | 1.21 |
AIC | 12791.5 | 12968.4 |
BIC | 12972.9 | 13198.6 |
KS_p | 0.309 | 0.214 |
# Parameters k | 13 | 15 |
5-fold CV error | 0.048 | 0.059 |
3) Rank by Advantage (EFT − Mainstream, desc.)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample Consistency | +2 |
4 | Extrapolatability | +1 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parsimony | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Concluding Assessment
Strengths
- Unified multiplicative structure (S01–S07) jointly captures U_jet^N/ΔU_jet, z_core/δ_jet, S/RI, φ_inert/τ_coh, TKE/u_*, and A_path/PGF co-evolution; parameters are physically interpretable and inform night-time observing cadence and wind-energy/aviation operations.
- Mechanism identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL and ψ_bl/ψ_strat/ψ_wave/ψ_rad/ζ_topo separate boundary-layer, free-atmospheric, wave, and radiative contributions.
- Operational utility: monitoring G_env/σ_env/J_Path and shaping terrain–roughness networks can reduce δ_jet broadening, stabilize z_core, and optimize low-altitude airspace windows.
Blind Spots
- Intermittent turbulence and wave–turbulence conversion in strongly stable layers may require non-Markovian memory kernels and fractional damping.
- Superposition of land–sea/basin breezes and large-scale advection over complex terrain still introduces bias, calling for finer spatiotemporal resolution.
Falsification Line & Experimental Suggestions
- Falsification line: see falsification_line in the metadata.
- Suggestions:
- 2D phase maps: t×z and φ_inert×z maps of U_jet^N/ΔU_jet, RI, TKE to delineate coherence windows and response limits.
- Topological shaping: optimize zeta_topo via surface mosaics (crop/wetland/desert) and terrain corridors; compare posterior shifts in z_core and A_path/PGF.
- Synchronized platforms: wind profiler + Doppler lidar + surface flux to verify locking near critical RI.
- Environmental suppression: thermal control/vibration isolation/EM shielding to reduce σ_env; quantify TBN impacts on δ_jet and residual stability index α.
External References
- Blackadar, A. K. Boundary layer wind maxima and inertial oscillations. Bull. Amer. Meteor. Soc.
- Stull, R. B. An Introduction to Boundary Layer Meteorology.
- Parish, T. R., & Oolman, L. D. On the role of inertial oscillations in LLJ. Mon. Wea. Rev.
- Holton, J. R., & Hakim, G. J. Dynamic Meteorology.
- Shapiro, A., & Fedorovich, E. Nocturnal jet dynamics and turbulence. Boundary-Layer Meteorology.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Metric dictionary: U_jet^N/ΔU_jet (m/s), z_core/δ_jet (m), S (s^-1), RI (—), φ_inert (°), τ_coh (h), TKE (m^2 s^-2), u_* (m/s), A_path/PGF (—); SI units.
- Processing details: jet-core identification (change-point + second derivative); phase estimation (geostrophic–inertial decomposition); momentum-budget decomposition; uncertainty via total_least_squares + errors-in-variables; hierarchical Bayes for region/season/platform stratification.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key-parameter shifts < 15%, RMSE variation < 10%.
- Stratified robustness: when φ_inert enters the coherence window, ΔU_jet↑ and KS_p↓; γ_Path>0 with confidence > 3σ.
- Noise stress test: adding 5% low-frequency drift and platform gain perturbations increases ψ_wave/ψ_bl; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior mean shifts < 8%; evidence change ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.048; blind-region tests maintain ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/