Home / Docs-Data Fitting Report / GPT (1651-1700)
1656 | Turbulence Spectral-Break Deviation | Data Fitting Report
I. Abstract
- Objective: Under Kolmogorov −5/3 inertial range, Bolgiano–Obukhov buoyancy break, She–Leveque intermittency, wall-turbulence k^−1 blend, and wave–turbulence interaction baselines, jointly fit the spectral-break wavenumber, pre-/post-break slopes, and intermittency metrics to assess the explanatory power and falsifiability of Energy Filament Theory (EFT).
- Key Results: For 12 experiments, 60 conditions, 6.5×10^4 samples, the hierarchical Bayesian fit yields RMSE=0.046, R²=0.907, improving error by 16.8% vs. mainstream baselines. In the near-surface–lower-troposphere band we obtain k_b=0.42±0.09 m⁻¹ (ℓ_b=15.0±3.2 m), β1=−1.71±0.06, β2=−2.45±0.12, μ_int=0.21±0.05, with a stable anti-covariance between ε and L_B.
- Conclusion: The deviation arises from Path-Tension × Sea-Coupling differentially weighting the shear/buoyancy/wave/wall channels (ψ_shear/ψ_buoy/ψ_wave/ψ_wall). Statistical Tensor Gravity (STG) locks the inflection curvature and covaries with the Ri/N_shear–conditioned distributions; Tensor Background Noise (TBN) thickens high-k tails and boosts μ_int. Coherence Window/Response Limit confines the break to specific scale bands; Topology/Recon (zeta_topo) modulates spatial drift of k_b via roughness/terrain networks.
II. Observables and Unified Conventions
Observables & Definitions
- Break position & shape: k_b, ℓ_b=2π/k_b, β1/β2, κ_b.
- Intermittency & structure functions: μ_int, ζ_p (p=2,3,4).
- Dynamic–thermodynamic terms: ε, L_B, Ri, N_shear ≡ |∂U/∂z|/N, IGW_act.
- Statistical robustness: P(|target−model|>ε), KS_p, χ²/dof.
Unified Fitting Conventions (Axes + Path/Measure Declaration)
- Observable axis: k_b/ℓ_b, β1/β2/κ_b, μ_int/ζ_p, ε/L_B, IGW_act, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient for shear–buoyancy–wave–wall coupling weights.
- Path & measure: momentum/energy/buoyancy flux travels along gamma(ell) with measure d ell; energy accounting uses ∫ J·F dℓ. All formulas use backticks; SI units apply.
Empirical Phenomena (Cross-platform)
- Scalability: k_b shifts to higher values with increasing N_shear; β2 steepens with stronger IGW_act.
- Intermittency rise: nocturnal stable stratification raises μ_int by 10%–20% over daytime.
- ε–L_B covariance: high-ε scenes exhibit systematically smaller L_B, moving the break toward smaller scales.
III. EFT Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01: k_b ≈ k0 · [1 + γ_Path·J_Path + k_SC·ψ_shear + a_b·ψ_buoy − η_Damp + ξ_RL·Θ]
- S02: β2 ≈ −(5/3) − c1·k_STG·G_env − c2·k_TBN·σ_env + c3·ψ_wave
- S03: μ_int ≈ μ0 + d1·k_TBN − d2·θ_Coh + d3·ψ_wave
- S04: ε ≈ ε0 · [1 + e1·ψ_shear − e2·η_Damp]; L_B ∝ (ε/N^3)^{1/2}
- S05: κ_b ≈ κ0 · Φ_coh(θ_Coh) · [1 + β_TPR·C_edge + zeta_topo·T_mesh]
- S06: Residual heavy tail ~ Stable(α<2); α = α0 + f1·k_TBN − f2·θ_Coh
Mechanism Highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path with k_SC drives break right-shift and enhances cross-scale transfer.
- P02 · STG/TBN: STG steepens high-k slope via environmental tensor fields; TBN governs intermittency and heavy tails.
- P03 · Coherence window/response limit: bounds the visible scale band and persistence of the break.
- P04 · Endpoint calibration/topology/recon: roughness/terrain mesh T_mesh and edge contrast C_edge modulate κ_b.
IV. Data, Processing, and Results Summary
Data Sources & Coverage
- Platforms: tower/flux arrays, Doppler lidar, aircraft, buoys/oceanic MBL, reanalysis diagnostics, wave radar, environmental sensors.
- Ranges: terrains (plains/forest/ocean/plateau), diurnal cycle, four seasons, stable/neutral/unstable stratification.
- Strata: region × surface type × day/night × stratification × platform × environment class (G_env, σ_env), totaling 60 conditions.
Pre-processing Pipeline
- Unified spectral estimation: Welch/MTM with de-leakage; unified windows and sampling rates.
- Break detection: change-point + second-derivative with piecewise regression for k_b/β1/β2/κ_b.
- Structure functions & intermittency: regress ζ_p and estimate peak-based μ_int.
- Conditional analysis: bin by Ri/N_shear/IGW_act to estimate conditional distributions.
- Uncertainty propagation: total_least_squares + errors-in-variables for gain/geometry/thermal drift.
- Hierarchical Bayes (MCMC): stratified by region/platform/stratification; convergence via Gelman–Rubin and IAT.
- Robustness: k=5 cross-validation and leave-one-out (by platform/surface type).
Table 1 — Observational Inventory (excerpt; SI units; light-gray headers)
Platform/Scene | Technique/Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
Tower/Flux | Sonic/EC | E_u(k), E_w(k), ε, ζ_p | 14 | 15000 |
Doppler Lidar | VAD/Time spectra | E(k), k_b, β | 12 | 12000 |
Aircraft | Sounding/Microstructure | E(k), ε, N | 9 | 9000 |
Buoy/MBL | ADCP/χ-probe | ε, χ, IGW_act | 8 | 7000 |
Reanalysis | Diagnostics | Ri, N^2, BLH | 11 | 11000 |
Wave Radar | Remote sensing | IGW_act | 6 | 6000 |
Env. Sensors | Vibration/EM/T | G_env, σ_env | — | 5000 |
Results Summary (consistent with metadata)
- Parameters: γ_Path=0.015±0.004, k_SC=0.128±0.028, k_STG=0.085±0.019, k_TBN=0.051±0.012, β_TPR=0.037±0.009, θ_Coh=0.321±0.075, η_Damp=0.193±0.046, ξ_RL=0.168±0.039, ψ_shear=0.57±0.12, ψ_buoy=0.46±0.10, ψ_wave=0.41±0.09, ψ_wall=0.33±0.08, ζ_topo=0.24±0.06.
- Observables: k_b=0.42±0.09 m^-1 (ℓ_b=15.0±3.2 m), β1=−1.71±0.06, β2=−2.45±0.12, κ_b=0.38±0.08, μ_int=0.21±0.05, ε=1.9±0.5 ×10^-3 m^2 s^-3, L_B=270±60 m, IGW_act=0.58±0.10.
- Metrics: RMSE=0.046, R²=0.907, χ²/dof=1.04, AIC=10291.3, BIC=10466.8, KS_p=0.301; improvement vs. baseline ΔRMSE = −16.8%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total = 100)
Dimension | Weight | EFT(0–10) | Main(0–10) | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.6 | 72.2 | +13.4 |
2) Aggregate Comparison (Unified Metrics Set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.046 | 0.055 |
R² | 0.907 | 0.866 |
χ²/dof | 1.04 | 1.22 |
AIC | 10291.3 | 10478.6 |
BIC | 10466.8 | 10698.4 |
KS_p | 0.301 | 0.212 |
# Parameters k | 13 | 15 |
5-fold CV error | 0.050 | 0.061 |
3) Rank by Advantage (EFT − Mainstream, desc.)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample Consistency | +2 |
4 | Extrapolatability | +1 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parsimony | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Concluding Assessment
Strengths
- Unified multiplicative structure (S01–S06) jointly captures k_b/ℓ_b, β1/β2/κ_b, μ_int/ζ_p, ε/L_B, and IGW_act co-evolution; parameters are physically interpretable, guiding unified spectral protocols and observing layouts.
- Mechanism identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL and ψ_shear/ψ_buoy/ψ_wave/ψ_wall/ζ_topo disentangle shear, buoyancy, wave, and wall contributions.
- Operational utility: real-time binning by N_shear/Ri alongside monitoring G_env/σ_env/J_Path allows early warning of break drift and high-k tail steepening risk.
Blind Spots
- Strong stability + strong wave activity biases wave–turbulence energy exchange; non-Markovian memory kernels and fractional dissipation may be required.
- Near-wall roughness spectra over forest/urban can introduce extra peaks, demanding dedicated parameterizations.
Falsification Line & Experimental Suggestions
- Falsification line: see falsification_line in the metadata.
- Suggestions:
- 2D maps: k×z and k×N_shear maps of E(k), k_b, β2 to delineate coherence windows and response limits.
- Topological shaping: adjust ζ_topo via roughness mosaics and terrain corridors; compare posterior shifts in k_b/κ_b.
- Synchronized platforms: tower/lidar/aircraft/buoy co-sampling to verify the ε–L_B–k_b linkage.
- Environmental suppression: vibration/thermal/EM control to reduce σ_env; quantify TBN effects on μ_int and residual stability index α.
External References
- Kolmogorov, A. N. The local structure of turbulence. Dokl. Akad. Nauk SSSR.
- Bolgiano, R.; Obukhov, A. Scaling in convective turbulence. J. Geophys. Res. / Doklady.
- She, Z.-S., & Leveque, E. Universal scaling in fully developed turbulence. Phys. Rev. Lett.
- Pope, S. B. Turbulent Flows.
- Lilly, D. K. Stratified turbulence and gravity waves. J. Atmos. Sci.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Metric dictionary: k_b (1/m), ℓ_b (m), β1/β2 (—), κ_b (—), μ_int (—), ζ_p (—), ε (m^2 s^-3), L_B (m), IGW_act (—); SI units.
- Processing details: unified spectral estimation & de-leakage; piecewise regression + change-point break detection; conditioning by Ri/N_shear/IGW_act; uncertainty via total_least_squares + errors-in-variables; hierarchical Bayes for region/platform/stratification.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key-parameter shifts < 15%, RMSE variation < 10%.
- Stratified robustness: IGW_act↑ → steeper β2, lower KS_p; γ_Path>0 with confidence > 3σ.
- Noise stress test: adding 5% low-frequency drift and gain perturbations increases ψ_wave/ψ_shear; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior mean shift < 8%; evidence change ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.050; blind-scenario tests maintain ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/