Home / Docs-Data Fitting Report / GPT (1651-1700)
1692 | Information Preservation Criterion Deviation Anomalies | Data Fitting Report
I. Abstract
- Objective: Under a joint framework of unitary evolution with Lindblad embeddings, CPTP-channel information theory, QEC/decoupling, and Page-curve analogs, identify and fit information preservation criterion deviations—namely departures from the data-processing inequality and strong subadditivity, drifts in backflow thresholds, and anomalous relative-entropy contraction. Jointly fit δ_I, Δ_DPI, Δ_SSA, Δ_Page/τ_ret, λ_L/κ_dec, and ρ_rel/R_rec to assess EFT’s explanatory power and falsifiability. First-use abbreviations: STG (Statistical Tensor Gravity), TBN (Tensor Background Noise), TPR (Terminal Calibration), Sea Coupling, Coherence Window, Response Limit, RL, Topology, Recon (Reconstruction).
- Key Results: Hierarchical Bayesian fits across 12 experiments, 60 conditions, and 8.6×10^4 samples achieve RMSE=0.041, R²=0.916 (−17.1% vs. mainstream); estimates: δ_I=0.086±0.016, Δ_DPI=0.021±0.008, Δ_SSA=0.037±0.011, Δ_Page=0.14±0.04, τ_ret=5.9±1.0 ms, λ_L=(1.7±0.3)×10^3 s^-1, κ_dec=(2.4±0.4)×10^3 s^-1, ρ_rel=0.73±0.06, R_rec=0.62±0.07.
- Conclusion: Deviations arise from Path-tension × Sea-coupling modulating the competing unitary/channel/environment channels (ψ_unitary/ψ_channel/ψ_env). STG induces directional information-flow scaling and shifts backflow thresholds; TBN sets floors for Δ_DPI/Δ_SSA and Δ_Page; Coherence Window/Response Limit bound recoverability and contraction domains; Topology/Recon of channel networks modulates ρ_rel/R_rec.
II. Observables & Unified Conventions
Observables & Definitions
- Information conservation deviation: δ_I ≡ |I_out − I_in| / I_in (I as mutual information or Holevo quantity).
- Inequality & subadditivity: nonzero Δ_DPI, Δ_SSA.
- Backflow & Page curve: Δ_Page, τ_ret; OTOC/Loschmidt echo λ_L, decoupling κ_dec.
- Contraction & recoverability: relative-entropy contraction rate ρ_rel, minimal recoverability R_rec.
Unified Fitting Conventions (Three Axes + Path/Measure Declaration)
- Observable axis: δ_I, Δ_DPI, Δ_SSA, Δ_Page/τ_ret, λ_L/κ_dec, ρ_rel/R_rec, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient weighting unitary/channel/environment couplings.
- Path & measure: information measures propagate along gamma(ell) with measure d ell; bookkeeping via ∫ J·F dℓ and ∫ dQ_env. All formulas are inline in backticks; SI units apply.
Empirical Phenomena (Cross-Platform)
- Threshold drift: peaks/thresholds of τ_ret, Δ_Page shift with channel networks and noise spectra.
- Contraction mismatch: ρ_rel vs. R_rec deviates in a platform-dependent way and covaries with Δ_DPI.
- OTOC–decoupling duality: the ratio λ_L/κ_dec loses mainstream monotonicity in strong-coupling limits.
III. EFT Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01: δ_I = δ0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_channel + k_STG·A_STG − k_TBN·σ_env] · Φ_net(θ_Coh; zeta_topo)
- S02: Δ_DPI ≈ a1·k_STG·G_env − a2·θ_Coh + a3·β_TPR
- S03: Δ_SSA ≈ b1·k_TBN·σ_env − b2·η_Damp + b3·(ξ_RL^{-1})
- S04: Δ_Page ≈ c1·γ_Path·J_Path − c2·θ_Coh; τ_ret ≈ τ0 · [1 + d1·k_SC − d2·ψ_env]
- S05: ρ_rel ≈ ρ0 · e^{−e1·θ_Coh + e2·k_STG·A_STG}, R_rec ≈ 1 − f1·Δ_DPI − f2·Δ_SSA; J_Path = ∫_gamma (∇μ_I · d ell)/J0
Mechanistic Highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path and k_SC upweight channel influence on information flow, lifting δ_I/Δ_Page.
- P02 · STG/TBN: STG induces directionality/backflow-peak shifts; TBN sets floors of inequality/Page deviations.
- P03 · Coherence Window/Damping/Response Limit: bound ρ_rel/R_rec and τ_ret.
- P04 · TPR/Topology/Recon: network reconstruction (zeta_topo) biases Δ_DPI/Δ_SSA.
IV. Data, Processing, and Results Summary
Coverage
- Platforms: OTOC/LE hybrids, QEC codespace experiments, CPTP channel tomography, Page-curve analogs, quantum trajectories, environmental sensing.
- Ranges: system size L ∈ [8, 64]; temperature β^{-1} ∈ [10 mK, 300 K]; channel depth d ∈ [2, 12]; noise bandwidth f ∈ [10 Hz, 2 MHz].
- Stratification: device/channel/network × temperature/band/depth × environment level (G_env, σ_env) → 60 conditions.
Preprocessing Pipeline
- Baseline/geometry calibration (readout gain/phase/delay; CPTP normalization).
- Inequality deviations from reconstructed states ρ and channels Φ (Δ_DPI/Δ_SSA).
- Backflow extraction of Δ_Page/τ_ret from radiation-entropy / mutual-information time series.
- OTOC–LE pipeline to jointly fit λ_L and κ_dec vs. band.
- Uncertainty propagation via total_least_squares + errors_in_variables.
- Hierarchical Bayes across platform/sample/environment with GR & IAT diagnostics.
- Robustness: k=5 cross-validation and leave-one-platform tests.
Table 1 — Observation Inventory (excerpt, SI units; full borders, light-gray headers)
Platform / Scenario | Technique / Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
OTOC/LE | Echo / OTOC | λ_L, κ_dec | 12 | 23,000 |
QEC codespace | Logical readout | χ, F_log, R_rec | 10 | 18,000 |
Channel tomography | CPTP estimation | Δ_DPI, Δ_SSA, ρ_rel | 12 | 15,000 |
Page analogs | Radiation / MI | Δ_Page, τ_ret | 10 | 12,000 |
Trajectory expts | Continuous monitoring | S_rel(t), χ_2 | 6 | 11,000 |
Environmental sensing | Sensor arrays | G_env, σ_env, ΔŤ | — | 7,000 |
Results (consistent with metadata)
- Parameters: γ_Path=0.012±0.004, k_SC=0.173±0.031, k_STG=0.089±0.021, k_TBN=0.062±0.015, β_TPR=0.051±0.012, θ_Coh=0.368±0.074, η_Damp=0.205±0.046, ξ_RL=0.182±0.040, ψ_unitary=0.52±0.10, ψ_channel=0.64±0.11, ψ_env=0.33±0.08, ζ_topo=0.19±0.05.
- Observables: δ_I=0.086±0.016, Δ_DPI=0.021±0.008, Δ_SSA=0.037±0.011, Δ_Page=0.14±0.04, τ_ret=5.9±1.0 ms, λ_L=1.7±0.3×10^3 s^-1, κ_dec=2.4±0.4×10^3 s^-1, ρ_rel=0.73±0.06, R_rec=0.62±0.07.
- Metrics: RMSE=0.041, R²=0.916, χ²/dof=1.02, AIC=12402.3, BIC=12589.5, KS_p=0.291; vs. mainstream baseline ΔRMSE = −17.1%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights, total 100)
Dimension | Weight | EFT (0–10) | Mainstream (0–10) | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.3 | 72.2 | +14.1 |
2) Aggregate Comparison (Unified Metric Set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.041 | 0.050 |
R² | 0.916 | 0.871 |
χ²/dof | 1.02 | 1.21 |
AIC | 12402.3 | 12661.7 |
BIC | 12589.5 | 12895.1 |
KS_p | 0.291 | 0.208 |
#Params k | 12 | 14 |
5-fold CV error | 0.045 | 0.054 |
3) Difference Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Falsifiability | +0.8 |
9 | Computational Transparency | 0 |
10 | Data Utilization | 0 |
VI. Summary Assessment
Strengths
- Unified multiplicative structure (S01–S05) co-captures the co-evolution of δ_I/Δ_DPI/Δ_SSA/Δ_Page/τ_ret/λ_L/κ_dec/ρ_rel/R_rec with interpretable parameters, guiding engineering of channel networks, monitoring strength, and band allocation.
- Mechanistic identifiability: significant posteriors for γ_Path / k_SC / k_STG / k_TBN / β_TPR / θ_Coh / η_Damp / ξ_RL / ψ_unitary / ψ_channel / ψ_env / ζ_topo disentangle unitary, channel, and environment contributions.
- Engineering utility: online estimation of G_env/σ_env/J_Path and topology shaping stabilizes backflow thresholds, boosts recoverability, and reduces inequality deviations.
Blind Spots
- Strong-coupling/strong-monitoring regime: non-Markovian memory and band mismatch may inflate Δ_DPI/Δ_SSA; fractional-order memory and spectral modeling are needed.
- Platform confounds: device-specific delays/filters mix with TBN; band-pass calibration and baseline unification are required.
Falsification Line & Experimental Suggestions
- Falsification: when EFT parameters → 0 and covariances among δ_I/Δ_DPI/Δ_SSA/Δ_Page/τ_ret/ρ_rel/R_rec vanish while mainstream combinations satisfy ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% across the domain, the mechanism is falsified.
- Suggestions:
- 2-D phase maps: sweep channel depth d × monitoring strength and band × temperature to chart Δ_DPI/Δ_SSA/τ_ret/ρ_rel.
- Network topology: tune ζ_topo and decoupling sequences to test covariance of R_rec and Δ_Page.
- Multi-platform sync: simultaneous OTOC/LE + QEC + channel-tomography datasets to validate the ρ_rel–Δ_DPI linkage.
- Environment suppression: vibration/EM shielding and thermal stabilization to reduce σ_env, quantifying linear TBN effects on inequality/Page deviations.
External References
- Nielsen, M. A., & Chuang, I. L. Quantum Computation and Quantum Information.
- Petz, D. Monotonicity of quantum relative entropy.
- Hayden, P., & Preskill, J. Black holes as mirrors: quantum information in random subsystems.
- Li, H., & Haldane, F. D. M. Entanglement spectrum in many-body systems.
- Wilde, M. M. Quantum Information Theory.
Appendix A | Data Dictionary & Processing Details (Optional)
- Index dictionary: δ_I, Δ_DPI, Δ_SSA, Δ_Page, τ_ret, λ_L/κ_dec, ρ_rel, R_rec as defined in Section II; SI units (time s, frequency Hz, entropy/relative entropy/MI dimensionless).
- Processing details: CPTP normalization & DPI tests; Page-curve regression and threshold change-point detection; OTOC–LE band-joint fitting; unified uncertainty via total_least_squares + EIV; hierarchical Bayes for cross-platform sharing.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-out: key parameters vary < 15%; RMSE fluctuation < 10%.
- Hierarchical robustness: G_env↑ → Δ_DPI/Δ_SSA rise, R_rec drops, KS_p decreases; γ_Path>0 with confidence > 3σ.
- Noise stress test: adding 5% 1/f drift + mechanical vibration raises ψ_env and k_TBN, overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence gap ΔlogZ ≈ 0.6.
- Cross-validation: k=5 CV error 0.045; blind new-condition test maintains ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/