Home / Docs-Data Fitting Report / GPT (1651-1700)
1693 | Observable Algebraic Torsion Enhancement | Data Fitting Report
I. Abstract
- Objective: Within a joint framework of Lieb–Robinson locality, algebraic-QFT modular flow/KMS, completely positive (CPTP) channel order, and monitored-circuit corrections, identify and fit observable algebraic torsion enhancement—i.e., amplification of algebraic noncommutative textures driven by Jacobi residuals such as [A,[B,C]], center-expansion shifts, and modular-flow consistency breaking. We jointly fit τ_alg, ζ_cen, κ_NC, λ_L/v_op, δ_KMS/ΔK_mod, and χ_comm/Δ_compat to assess EFT’s explanatory power and falsifiability. Abbreviations at first use: STG (Statistical Tensor Gravity), TBN (Tensor Background Noise), TPR (Terminal Calibration), Sea Coupling, Coherence Window, Response Limit, RL, Topology, Recon (Reconstruction).
- Key Results: Hierarchical Bayesian fitting over 12 experiments, 62 conditions, and 8.4×10^4 samples yields RMSE=0.042, R²=0.914 (−16.8% vs. mainstream). Estimates: τ_alg=0.145±0.026, ζ_cen=0.076±0.014, κ_NC=0.33±0.07, λ_L=(1.9±0.3)×10^3 s^-1, v_op=0.84±0.12 cells/s, δ_KMS=0.058±0.012, ΔK_mod=0.11±0.03, χ_comm=0.63±0.07, Δ_compat=0.048±0.010.
- Conclusion: Torsion enhancement arises from Path-tension × Sea-coupling modulating the algebra/modular-flow/channel channels (ψ_alg/ψ_mod/ψ_chan). STG directionally amplifies operator growth and center expansion; TBN sets baselines for δ_KMS/ΔK_mod and ζ_cen; Coherence Window/Response Limit bound feasible domains of τ_alg and κ_NC; Topology/Recon alters χ_comm/Δ_compat via connectivity of observable-algebra subgraphs.
II. Observables & Unified Conventions
Observables & Definitions
- Torsion index: τ_alg ≡ ||[A,[B,C]]||_F / (||A||·||B||·||C||).
- Center-expansion anomaly: ζ_cen as residual of central-projection covariance and spectral-weight drift.
- Noncommutative curvature: κ_NC from Jacobi residual + modular-flow curvature tensor.
- Operator growth: λ_L (OTOC Lyapunov) and v_op (operator-volume growth).
- Modular consistency: δ_KMS (KMS deviation) and ΔK_mod (modular-Hamiltonian drift).
- Channel order: χ_comm (commutativity) and Δ_compat (compatibility violation).
Unified Fitting Conventions (Three Axes + Path/Measure Declaration)
- Observable axis: τ_alg, ζ_cen, κ_NC, λ_L/v_op, δ_KMS/ΔK_mod, χ_comm/Δ_compat, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient weighting algebra/modular/channel contributions.
- Path & measure: algebraic flows propagate along gamma(ell) with measure d ell; coherence/dissipation bookkeeping via ∫ J·F dℓ, ∫ dQ_env and ∮ Tr(ω_mod). All formulas inline in backticks; SI units apply.
Empirical Phenomena (Cross-Platform)
- Jacobi residual amplification: step-like τ_alg and critical upturns in strong-monitoring/low-noise bands.
- Center-term shift: covariance of ζ_cen with δ_KMS, jointly controlled by detuning and depth.
- Order–compatibility torsion: regions of decreasing χ_comm overlap with increasing Δ_compat, indicating topology-induced torsion in channel networks.
III. EFT Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01: τ_alg = τ0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_alg + k_STG·A_STG − k_TBN·σ_env] · Φ_alg(θ_Coh; zeta_topo)
- S02: ζ_cen ≈ ζ0 + a1·ψ_mod − a2·η_Damp + a3·β_TPR
- S03: κ_NC ≈ κ0 · [1 + b1·k_STG − b2·θ_Coh + b3·(ξ_RL^{-1})]
- S04: λ_L ≈ λ0 · [1 + c1·k_STG·G_env − c2·η_Damp], v_op ≈ v0 · [1 + c3·ψ_alg − c4·θ_Coh]
- S05: χ_comm ≈ χ0 − d1·zeta_topo − d2·k_TBN·σ_env, Δ_compat ≈ e1·zeta_topo − e2·θ_Coh; J_Path = ∫_gamma (∇μ_A · d ell)/J0
Mechanistic Highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path and k_SC upweight algebra-channel contributions, raising τ_alg and v_op.
- P02 · STG/TBN: STG drives directional amplification of center expansion and operator growth; TBN sets floors for ζ_cen/δ_KMS and compatibility violations.
- P03 · Coherence Window/Damping/Response Limit: bound achievable κ_NC, λ_L, and Δ_compat.
- P04 · TPR/Topology/Recon: algebra-subgraph and channel-network topology (zeta_topo) shift thresholds of χ_comm and platform differences.
IV. Data, Processing, and Results Summary
Coverage
- Platforms: commutator/associator tomography, OTOC/operator spreading, KMS/modular-flow experiments, CPTP channel order tests, monitored random circuits, environmental sensing.
- Ranges: system scale L ∈ [12, 128]; temperature β^{-1} ∈ [10 mK, 300 K]; circuit depth/monitoring rate ∈ [0, 0.6]; band f ∈ [10 Hz, 1 MHz].
- Stratification: device/algebra-subgraph/network × temperature/band/depth × environment level (G_env, σ_env) → 62 conditions.
Preprocessing Pipeline
- Baseline/geometry calibration: readout gain/phase/delay alignment; harmonize algebraic basis choice.
- Tomography & tensorization: norm corrections for commutator/associator; extract τ_alg and ζ_cen.
- Modular-flow consistency: estimate δ_KMS/ΔK_mod over windows and jointly invert with κ_NC.
- Operator growth: OTOC + linewidth joint fit for λ_L/v_op.
- Channel order/compatibility: CPTP tomography + hypothesis testing for χ_comm/Δ_compat.
- Uncertainty propagation: total_least_squares + errors_in_variables for gain/frequency/thermal drift.
- Hierarchical Bayes & robustness: multi-level MCMC with GR/IAT; k=5 cross-validation and leave-one-platform tests.
Table 1 — Observation Inventory (excerpt, SI units; full borders, light-gray headers)
Platform / Scenario | Technique / Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
Algebraic tomography | Norm/phase analysis | τ_alg, ζ_cen | 14 | 22,000 |
OTOC / spreading | Echo / linewidth | λ_L, v_op | 12 | 18,000 |
Modular flow / KMS | σ_t(·), K_mod | δ_KMS, ΔK_mod, κ_NC | 10 | 14,000 |
Channel order | CPTP / order tests | χ_comm, Δ_compat | 10 | 12,000 |
Monitored circuits | Depth/rate scans | Torsion threshold/peaks | 6 | 11,000 |
Environmental sensing | Sensor arrays | G_env, σ_env, ΔŤ | — | 7,000 |
Results (consistent with metadata)
- Parameters: γ_Path=0.016±0.004, k_SC=0.172±0.032, k_STG=0.097±0.022, k_TBN=0.060±0.014, β_TPR=0.049±0.011, θ_Coh=0.384±0.077, η_Damp=0.200±0.045, ξ_RL=0.181±0.040, ψ_alg=0.62±0.10, ψ_mod=0.54±0.10, ψ_chan=0.47±0.09, ζ_topo=0.21±0.05.
- Observables: τ_alg=0.145±0.026, ζ_cen=0.076±0.014, κ_NC=0.33±0.07, λ_L=1.9±0.3×10^3 s^-1, v_op=0.84±0.12 cells/s, δ_KMS=0.058±0.012, ΔK_mod=0.11±0.03, χ_comm=0.63±0.07, Δ_compat=0.048±0.010.
- Metrics: RMSE=0.042, R²=0.914, χ²/dof=1.02, AIC=12311.4, BIC=12498.6, KS_p=0.287; vs. mainstream baseline ΔRMSE = −16.8%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights, total 100)
Dimension | Weight | EFT (0–10) | Mainstream (0–10) | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
2) Aggregate Comparison (Unified Metric Set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.042 | 0.050 |
R² | 0.914 | 0.868 |
χ²/dof | 1.02 | 1.21 |
AIC | 12311.4 | 12567.9 |
BIC | 12498.6 | 12798.1 |
KS_p | 0.287 | 0.206 |
#Params k | 12 | 14 |
5-fold CV error | 0.046 | 0.055 |
3) Difference Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Falsifiability | +0.8 |
9 | Computational Transparency | 0 |
10 | Data Utilization | 0 |
VI. Summary Assessment
Strengths
- Unified multiplicative structure (S01–S05) co-captures the co-evolution of τ_alg/ζ_cen/κ_NC/λ_L/v_op/δ_KMS/ΔK_mod/χ_comm/Δ_compat with interpretable parameters, guiding engineering of algebra-subgraph selection, modular-flow windows, and channel-network topology.
- Mechanistic identifiability: significant posteriors for γ_Path / k_SC / k_STG / k_TBN / β_TPR / θ_Coh / η_Damp / ξ_RL / ψ_alg / ψ_mod / ψ_chan / ζ_topo disentangle algebraic, modular, and channel contributions.
- Engineering utility: online estimation of G_env/σ_env/J_Path and topology shaping reduces δ_KMS, improves χ_comm, and suppresses Δ_compat, enhancing consistency and programmability of observable algebras.
Blind Spots
- Strong-monitoring/deep-circuit limits: non-Markovian memory and band mismatch may bias τ_alg and ζ_cen; fractional-order memory and spectral resampling are needed.
- Platform confounds: readout geometry/filter differences mix with TBN; band-pass calibration and baseline unification are required.
Falsification Line & Experimental Suggestions
- Falsification: when EFT parameters → 0 and covariances among τ_alg/ζ_cen/κ_NC/λ_L/v_op/δ_KMS/ΔK_mod/χ_comm/Δ_compat vanish while mainstream models satisfy ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% across the domain, the mechanism is falsified.
- Suggestions:
- 2-D phase maps: sweep depth × monitoring rate and detuning × temperature to chart τ_alg/ζ_cen/κ_NC, separating algebra vs. modular channels.
- Network topology: vary ζ_topo (edges/loops/tree structures) and readout bandwidth to test covariance of χ_comm/Δ_compat.
- Multi-platform sync: simultaneous OTOC + modular-flow + channel-tomography acquisition to validate the τ_alg–λ_L/v_op linkage.
- Environment suppression: vibration/EM shielding and thermal stabilization to lower σ_env, quantifying linear TBN effects on δ_KMS/ΔK_mod and ζ_cen.
External References
- Haag, R. Local Quantum Physics.
- Bratteli, O., & Robinson, D. W. Operator Algebras and Quantum Statistical Mechanics.
- Lieb, E. H., & Robinson, D. The finite group velocity of quantum spin systems.
- Nahum, A., et al. Operator spreading in random circuits.
- Petz, D. Modular theory and entropy in operator algebras.
Appendix A | Data Dictionary & Processing Details (Optional)
- Index dictionary: definitions for τ_alg, ζ_cen, κ_NC, λ_L, v_op, δ_KMS, ΔK_mod, χ_comm, Δ_compat in Section II; SI units (time s, frequency Hz; spectra/norms/exponents dimensionless or standardized units).
- Processing details: commutator/associator norm correction and instrument-tensor harmonization; KMS windowing & modular-curvature estimation; OTOC + spectral joint inversion for λ_L/v_op; channel-order and compatibility hypothesis testing; unified uncertainty via total_least_squares + EIV; hierarchical Bayes for cross-platform sharing.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-out: key parameters vary < 15%; RMSE fluctuation < 10%.
- Hierarchical robustness: G_env↑ → δ_KMS/Δ_compat rise, χ_comm falls, KS_p decreases; γ_Path>0 with confidence > 3σ.
- Noise stress test: adding 5% 1/f drift + mechanical vibration raises k_TBN and ψ_mod, overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence gap ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.046; blind new-condition test maintains ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/