HomeDocs-Technical WhitePaper03-EFT.WP.Core.Parameters v1.0

Chapter 6 — Calibration and Inference Workflow


I. Aims and Scope


II. Inputs, Outputs, and Conventions

  1. Input set
    • Model: y = f(x; theta) or a constrained form R(u, theta) = 0 with an observation map y = G(u).
    • Data: data = { (x_k, y_k) }_{k=1..N }, noise covariance Σ, weight matrix W = Σ^{-1}.
    • Priors and bounds: prior(theta), lb ≤ theta ≤ ub, C_eq(theta)=0, C_ineq(theta) ≤ 0.
  2. Output set
    • Point estimates: theta_MLE, theta_MAP; posterior samples: { theta^{(s)} }_{s=1..S}.
    • Diagnostics: Fisher(theta_hat), Cov[theta], Corr[theta], information-criteria and cross-validation scores.
    • Report artifacts: non-dimensionalized parameter table, convergence curves, residuals, and sensitivity summaries.

III. Maximum Likelihood (MLE) Objective and Constraints (Minimal Equation S61-1)

  1. Weighted negative log-likelihood
    • l(theta) def= - log L(data | theta) = ( 1 / 2 ) * Σ_{k=1..N} ( r_k(theta)^T * W_k * r_k(theta) ) + const
    • Residuals: r_k(theta) = y_k - f(x_k; theta)
  2. Constrained MLE
    minimize_theta l(theta) subject to lb ≤ theta ≤ ub, C_eq(theta)=0, C_ineq(theta) ≤ 0
  3. Gradients and Hessian (Gaussian approximation)
    • ∂l/∂theta = - J^T * W * r
    • ∂^2 l/∂theta^2 approx J^T * W * J(ignore second-order ∂J/∂theta)

IV. Maximum A Posteriori (MAP) and Regularization (Minimal Equation S61-2)

  1. Posterior and negative log-posterior
    • post(theta | data) def= L(data | theta) * prior(theta) / Z
    • U(theta) def= - log post(theta | data) = l(theta) - log prior(theta) + const
  2. Typical prior examples
    • prior(theta_i) = Normal(mu_i, sigma_i) ⇒ - log prior(theta_i) = ( 1 / 2 ) * ( (theta_i - mu_i)^2 / sigma_i^2 ) + const
    • Structured sparsity: prior(theta_i) = Laplace(b) ⇒ - log prior(theta_i) = |theta_i| / b + const
  3. MAP optimization
    minimize_theta U(theta) subject to lb ≤ theta ≤ ub, C_eq=0, C_ineq ≤ 0

V. Bayesian Sampling (MCMC) and Posterior Estimation (Minimal Equation S61-3)

  1. Target density: π(theta) ∝ exp( - U(theta) )
  2. Sampling strategies
    • Gradient-driven: NUTS/HMC, requiring ∂U/∂theta (assembled from compute_jacobian in I30 10 plus prior gradients).
    • When gradients are hard to obtain: Random-Walk Metropolis or Adaptive Metropolis (less efficient).
  3. Posterior statistics
    • E[theta_i | data] approx ( 1 / S ) * Σ_{s=1..S} theta_i^{(s)}
    • Cov[theta] approx covariance( { theta^{(s)} } )
    • Intervals: CI_{1-α}[theta_i] via sample quantiles or normal approximation.

VI. Multi-Dataset Joint Calibration (Minimal Equation S61-4)

  1. Data clusters data = { data_m }_{m=1..M } with weights w_m ≥ 0:
    • log L_joint(data | theta) = Σ_{m=1..M} w_m * log L_m(data_m | theta)
    • U_joint(theta) = - log L_joint - log prior(theta) + const
  2. Weighting strategies
    • Homoscedastic noise: w_m = 1
    • Heteroscedastic noise: w_m = 1 / σ_m^2 or sample-normalized w_m = n_m / Σ n_m
  3. Scenario governance: record { data_m, w_m } and versions in create_scenario for reproducibility.

VII. Arrival-Time Coupling Conventions (Aligned with S20-)


VIII. Information Criteria and Cross-Validation (Minimal Equation S61-5)

  1. With θ_hat a point estimate, p = dim(theta_free), N = sample size.
  2. AIC and BIC
    • AIC = 2 * p - 2 * log L(data | θ_hat)
    • BIC = p * log(N) - 2 * log L(data | θ_hat)
  3. WAIC (posterior mean log predictive density)
    • lppd = Σ_{k=1..N} log( ( 1 / S ) * Σ_{s=1..S} p(y_k | theta^{(s)}) )
    • p_waic = Σ_{k=1..N} Var_{s}( log p(y_k | theta^{(s)}) )
    • WAIC = -2 * ( lppd - p_waic )
  4. LOO-CV (approximate)
    ELPD_LOO = Σ_{k=1..N} log( p_{-k}(y_k) )(Pareto-smoothed importance approximation可用)
  5. Early-stopping criteria (validation set val)
    If Δ log L(val | θ_t) < ε_ll for K consecutive rounds, or Corr[theta]_t degrades persistently, trigger early stop.

IX. Non-Dimensionalization and Transform Strategy (Aligned with Chapter 3)


X. Calibration Pipeline Mx-2 (Standard Steps)


XI. Implementation Binding and Minimal Working Examples (I30 5 Family)

  1. Point estimates
    • theta_mle = infer_mle(model, data_train, params=theta_free)
    • theta_map = infer_map(model, data_train, params=theta_free)
  2. Posterior
    samples = posterior_sample_mcmc(model, data_train, params=theta_free, n=S, burn=B, method="NUTS")
  3. Joint
    calibrate_joint(datasets=[D1,...,DM], weights=[w1,...,wM], params=theta_free)
  4. Diagnostics
    fisher_information(model, theta_map, data_train);regularize_cov(Cov, "shrinkage", alpha)
  5. Cross-volume gradients
    J = compute_jacobian(eqn=S20_arrival, params=[...]) plugged into infer_* for first- and second-order information.

XII. Misuse and Conflict Checklist


XIII. Output Anchors and Citations


Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/