HomeDocs-Technical WhitePaper03-EFT.WP.Core.Parameters v1.0

Chapter 7 — Uncertainty and Propagation


I. Aims and Scope


II. Uncertainty Classes and Notation

  1. Sources
    • Epistemic (parameters): theta ~ post(theta | data) or the prior prior(theta).
    • Aleatoric (observation/process noise): y = f(x; theta) + ε, ε ~ N(0, Σ) or other families.
  2. Targets
    • Scalar functionals: g(theta) (e.g., T_arr(gamma; theta)).
    • Field/vector outputs: y = f(x; theta), evaluated on domain Ω or a discrete grid.
  3. Statistics
    E[•], Var[•], Cov[•], Corr[•], CI_{1-α}[•], VaR_α[•], CVaR_α[•].

III. Linearized Propagation (Delta Method, Minimal Equation S71-1)

  1. For a scalar output z = g(theta), first-order about theta_hat:
    Var[z] approx grad_theta[g]^T * Cov[theta] * grad_theta[g]
  2. For a vector output y = f(theta) ∈ R^m:
    • Cov[y] approx J_f * Cov[theta] * J_f^T
    • where J_f = ∂ f / ∂ theta |_{theta=theta_hat} (see Chapter 5 S51-1 and interface compute_jacobian).
  3. Validity
    f is approximately linear in a neighborhood of theta_hat; Cov[theta] is bounded and estimable (from Chapter 6 MCMC or a Fisher approximation).

IV. Uncertainty Propagation for Arrival Time (Minimal Equation S71-2)

  1. Continuous form
    • g(theta) = T_arr( gamma; theta ) = ( ∫_{gamma} ( n_eff(x; theta) / c_ref(theta) ) d ell )
    • ∂ g / ∂ theta_i = ( ∫_{gamma} ( ( ∂ n_eff / ∂ theta_i ) / c_ref - n_eff * ( ∂ c_ref / ∂ theta_i ) / ( c_ref^2 ) ) d ell )
    • Var[g] approx grad_theta[g]^T * Cov[theta] * grad_theta[g]
  2. Discrete realization (with discretize_path, propagate_time)
    • T_arr approx Σ_{j=1..N_γ} ( n_eff(x_j; theta) / c_ref(theta) ) * Δ ell_j
    • ∂ g / ∂ theta_i approx Σ_{j} ( ( ∂ n_eff(x_j) / ∂ theta_i ) / c_ref - n_eff(x_j) * ( ∂ c_ref / ∂ theta_i ) / ( c_ref^2 ) ) * Δ ell_j
  3. Dimensional check
    The integrand ( n_eff / c_ref ) * d ell is dimensionless; admit only after check_dim(expr) passes.

V. Nonlinear Propagation: Monte Carlo and Quasi–Monte Carlo (Minimal Equation S71-3)

  1. Sampling schemes
    • Posterior propagation: theta^{(s)} ~ post(theta | data); prior propagation: theta^{(s)} ~ prior(theta).
    • Sampling families: MC, QMC (Sobol), LHS; prefer QMC/LHS to reduce variance.
  2. Estimators
    • μ_y approx ( 1 / S ) * Σ_{s=1..S} f(theta^{(s)})
    • Cov[y] approx covariance( { f(theta^{(s)}) } )
    • CI_{1-α}[y] via quantiles or normal approximation.
  3. Convergence and budget
    • Monitor standard error SE(μ_y) and stabilized quantiles; stop when max_j |Δ q_j| < ε_q for K consecutive checks.
    • Under cost constraints, prioritize sample coverage S over grid refinement.

VI. Predictive Uncertainty and Intervals (Minimal Equation S71-4)

  1. Predictive distribution
    • p(y_new | data) = ∫ p(y_new | theta) * post(theta | data) d theta
    • Approximation: draw { y_new^{(s)} ~ p(• | theta^{(s)}) }, then form CI_{1-α}[y_new] and PI_{1-α}[y_new].
  2. Risk metrics
    • VaR_α[y] = quantile_α(y); CVaR_α[y] = E[ y | y ≥ VaR_α[y] ]
    • Useful for exceedance risks on arrival time, energy budgets, etc.

VII. Uncertainty Budget and Contributions (Minimal Equation S71-5)

  1. Linearized variance decomposition (by parameter)
    • Var[z] approx Σ_i Σ_j g_i * Cov[theta]_{ij} * g_j, where g_i = ∂ g / ∂ theta_i
    • Group contribution for theta_g: Var_g[z] = g_g^T * Cov[theta_g] * g_g + cross_terms
  2. Sobol indices (global)
    • S_i = Var( E[ z | theta_i ] ) / Var(z); S_{Ti} is the total effect.
    • Implementation note: share the sample bank between global_sensitivity_sobol and propagate_uncertainty_mc for reuse.

VIII. Consistency for Windowing and Coarse-Graining


IX. Non-Dimensionalization, Transforms, and Inverse Mapping


X. Uncertainty Propagation Pipeline Mx-3 (Standard Steps)


XI. Implementation Binding and Interface Mapping


XII. Misuse and Conflict Checklist


XIII. Output Anchors and Citations


Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/